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ABSTRACT
There has been a recent resurgence of interest in explainable ar-
ti�cial intelligence (XAI) that aims to reduce the opaqueness of
AI-based decision-making systems, allowing humans to scrutinize
and trust them. Prior work in this context has focused on the at-
tribution of responsibility for an algorithm’s decisions to its inputs
wherein responsibility is typically approached as a purely associ-
ational concept. In this paper, we propose a principled causality-
based approach for explaining black-box decision-making systems
that addresses limitations of existing methods in XAI. At the core
of our framework lies probabilistic contrastive counterfactuals, a
concept that can be traced back to philosophical, cognitive, and
social foundations of theories on how humans generate and select
explanations. We show how such counterfactuals can quantify the
direct and indirect in�uences of a variable on decisions made by
an algorithm, and provide actionable recourse for individuals nega-
tively a�ected by the algorithm’s decision. Unlike prior work, our
system, L����: (1) can compute provably e�ective explanations and
recourse at local, global and contextual levels; (2) is designed to
work with users with varying levels of background knowledge of
the underlying causal model; and (3) makes no assumptions about
the internals of an algorithmic system except for the availability of
its input-output data. We empirically evaluate L���� on four real-
world datasets and show that it generates human-understandable
explanations that improve upon state-of-the-art approaches in XAI,
including the popular LIME and SHAP. Experiments on synthetic
data further demonstrate the correctness of L����’s explanations
and the scalability of its recourse algorithm.
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1 INTRODUCTION
Algorithmic decision-making systems are increasingly used to au-
tomate consequential decisions, such as lending, assessing job ap-
plications, informing release on parole, and prescribing life-altering
medications. There is growing concern that the opacity of these
systems can in�ict harm to stakeholders distributed across di�erent
segments of society. These calls for transparency created a resur-
gence of interest in explainable arti�cial intelligence (XAI), which
aims to provide human-understandable explanations of outcomes or
processes of algorithmic decision-making systems (see [36, 64, 65]
for recent surveys).

E�ective explanations should serve the following purposes: (1)
help to build trust by providing a mechanism for normative evalua-
tion of an algorithmic system, ensuring di�erent stakeholders that
the system’s decision rules are justi�able [86]; and (2) provide users
with an actionable recourse to change the results of algorithms in
the future [9, 45, 99, 101]. Existing methods in XAI can be broadly
categorized based on whether explainability is achieved by design
(intrinsic) or by post factum system analysis (post hoc), and whether
the methods assume access to system internals (model dependent) or
can be applied to any black-box algorithmic system (model agnostic).

In this work, we address post hoc and model-agnostic expla-
nation methods that are applicable to any proprietary black-box
algorithm. Prior work in this context has focused on the attribution
of responsibility of an algorithm’s decisions to its inputs. These
approaches include methods for quantifying the global (population-
level) or local (individual-level) in�uence of an algorithm’s input
on its output [5, 17, 24, 25, 31, 34, 38, 57, 58]; they also include
methods based on surrogate explainability, which search for a sim-
ple and interpretable model (such as a decision tree or a linear
model) that mimics the behaviour of a black-box algorithm [75, 76].
However, these methods can produce incorrect and misleading ex-
planations primarily because they focus on the correlation between
the input and output of algorithms as opposed to their causal rela-
tionship [4, 26, 36, 39, 48, 65]. Furthermore, several recent works
have argued for the use of counterfactual explanations, which are
typically obtained by considering the smallest perturbation in an
algorithm’s input that can lead to the algorithm’s desired out-
come [51, 60, 68, 96, 101]. However, due to the causal dependency
between variables, these perturbations are not translatable into
real-world interventions and therefore fail to generate insights that
are actionable in the real world [8, 42, 44, 46, 60, 89].

This paper describes a new causality-based framework for
generating post-hoc explanations for black-box decision-making al-
gorithms that uni�es existing methods in XAI and addresses
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Maeve

Irrfan

Purpose Repairs
Age Adult
Credit	amount 1,275	DM
Month 10	months
Savings <	100	DM
Credit	history Existing	paid	duly

Skill	level Highly	qualified
Age Senior
Credit	amount 15,857	DM
Month 36	months
Savings <	100	DM
Credit	history Existing	paid	duly

Actionable 
Attributes

Current 
Value

Required
Value

Purpose Repairs Furniture
Credit	amount 1,275	DM 3,000	– 5,000	DM

Savings <	100	DM 500	– 1,000	DM

Recommended Recourse:

This recourse will lead
to a positive decision.

Your loan would have been approved with
28% probability were Purpose = ‘Furniture’.

Your loan would have been rejected with 53% probability
were Credit history = ‘Delay in paying off in the past’.

A decline in credit history is most likely to 
change a positive decision into negative.

Increasing status of checking account is
more likely to flip a negative decision for
Sex=Male than for Sex=Female.

Sufficiency 
score

Necessity 
score

LEWIS

Figure 1: An overview of explanations generated by L���� for a loan approval algorithm built using the UCI German credit
dataset (see Section 5 for details). Given a black-box classi�cation algorithm, L���� generates: (a) Local explanations, that
explain the algorithm’s output for an individual; (b) Global explanations, that explain the algorithm’s behavior across di�erent
attributes; and (c) Contextual explanations, that explain the algorithms’s predictions for a sub-population of individiuals.

their limitations. Our system, L����, 1 reconciles the aforemen-
tioned objectives of XAI by: (1) providing insights into what causes
an algorithm’s decisions at the global, local and contextual (sub-
population) levels, and (2) generating actionable recourse translat-
able into real-world interventions. At the heart of our proposal are
probabilistic contrastive counterfactuals of the following form:
“For individual(s) with attribute(s) <actual-value> for whom
an algorithm made the decision <actual-outcome>, the de-
cision would have been <foil-outcome> with probability
<score> had the attribute been <counterfactual-value>."

(1)

Contrastive counterfactuals are at the core of the philosophical,
cognitive, and social foundations of theories that address how hu-
mans generate and select explanations [18, 29, 35, 55, 66, 71, 102].
Their probabilistic interpretation has been formalized and studied
extensively in AI, biostatistics, political science, epistemology, biol-
ogy and legal reasoning [14, 32, 32, 33, 35, 61, 71, 77, 78, 91]. While
their importance in achieving the objectives of XAI has been recog-
nized in the literature [63], very few attempts have been made to

1Our system is named after David Lewis (1941–2001), who made signi�cant con-
tributions to modern theories of causality and explanations in terms of counterfactuals.
In his essay on causal explanation [52], Lewis argued that “to explain an event is to
provide some information about its causal history." He further highlighted the role
of counterfactual contrasts in explanations when he wrote, “One way to indicate
what sort of explanatory information is wanted is through the use of contrastive
why-questions . . . [where] information is requested about the di�erence between the
actualized causal history of the explanandum and the unactualized causal histories of
its unactualized alternatives [(termed as “foils" by Peter Lipton [55])]. Why did I visit
Melbourne in 1979, rather than Oxford or Uppsala or Wellington?"

operationalize causality-based contrastive counterfactuals for XAI.
The following example illustrates how L���� employs contrastive
counterfactuals to generate di�erent types of explanations.

Example 1.1. Consider the black-box loan-approval algorithm
in Figure 1 for which L���� generates di�erent kinds of explana-
tions. For local explanations, L���� ranks attributes in terms of
their causal responsibility to the algorithm’s decision. For individu-
als whose loans were rejected, the responsibility of an attribute is
measured by its su�ciency score, de�ned as “the probability that
the algorithm’s decision would have been positive if that attribute
had a counterfactual value". For Maeve, the su�ciency score of
28% for purpose of loan means that if purpose were ‘Furniture’,
Maeve’s loan would have been approved with a 28% probability.
For individuals whose loans were approved, the responsibility of an
attribute is measured by its necessity score, de�ned as “the probabil-
ity that the algorithm’s decision would have been negative if that
attribute had a counterfactual value." For Irrfan, the necessity score
of 53% for credit history means that had credit history been worse,
Irrfan would have been denied the loan with a 53% probability.
Furthermore, individuals with a negative decision, such as Maeve,
would want to know the actions they could take that would likely
change the algorithm’s decision. For such users, L���� suggests
the minimal causal interventions on the set of actionable attributes
that are su�cient, with high probability, to change the algorithm’s
decision in the future. Additionally, L���� generates insights about
the algorithm’s global behavior with respect to each attribute by
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computing its necessity, su�ciency, and necessity and su�ciency
scores at the population level. For instance, a higher necessity score
for credit history indicates that a decline in its value is more likely
to reverse a positive decision than a lower value of savings; a lower
su�ciency score for age indicates that increasing it is less likely to
overturn a negative decision compared to credit history or savings.
By further customizing the scores for a context or sub-population
of individuals that share some attributes, L���� illuminates the
contextual behavior of the algorithm in di�erent sub-populations.
In Figure 1, L���� indicates that improving the status of checking
account is more likely to reverse a negative decision for {sex=Male}
than for {sex=Female}.

To compute these scores, L���� relies on the ordinal importance
of attribute values e.g., higher savings are more likely to be granted
a loan than lower savings. In case the attribute values do not possess
a natural ordering or the ordering is not known apriori, L���� infers
it from the output of the black-box algorithm (more in Section 4.1).

Our contributions. This paper proposes a principled approach
for explaining black-box decision-making systems using probabilis-
tic contrastive counterfactuals. Key contributions include:
(1)Adopting standard de�nitions of su�cient and necessary cau-

sation based on contrastive counterfactuals to propose novel
probabilistic measures, called necessity scores and su�-
ciency scores, which respectively quantify the extent to which
an attribute is necessary and su�cient for an algorithm’s deci-
sion (Section 3.1). We show that these measures play unique,
complementary roles in generating e�ective explanations for
algorithmic systems. While necessity score addresses the attri-
bution of causal responsibility of an algorithm’s decisions to an
attribute, su�ciency score addresses the tendency of an attribute
to produce the desired algorithmic outcome.

(2)Demonstrating that our newly proposed measures can generate
a wide range of explanations for algorithmic systems that
quantify the necessity and su�ciency of attributes that implic-
itly or explicitly in�uence an algorithm’s decision-making pro-
cess (Section 3.2). More importantly, L���� generates contex-
tual explanations at global or local levels and for a user-de�ned
sub-population.

(3)Showing that the problem of generating actionable recourse
can be framed as an optimization problem that searches for
a minimal intervention on a pre-speci�ed set of actionable
variables that have a high su�ciency score for producing the
algorithm’s desired future outcome.

(4)Establishing conditions under which the class of probabilistic
contrastive counterfactuals we use can be bounded and es-
timated using historical data (Section 4.1). Unlike previous
attempts to generate actionable recourse using counterfactual
reasoning, L���� leverages established bounds and integer pro-
gramming to generate reliable recourse under partial background
knowledge on the underlying causal models ( Section 4.2).

(5)Comparing L���� to state-of-the-art methods in XAI (Sections 5
and 6). We present an end-to-end experimental evaluation
on both real and synthetic data. On real datasets, we show
that L���� generates intuitive and actionable explanations that
are consistent with insights from existing literature and surpass
state-of-the-art methods in XAI. Evaluation on synthetic data

Symbol Meaning
- ,. ,/ attributes (variables)
X,Y,Z sets of attributes
⇡>< (- ),⇡>< (X) their domains
G 2 ⇡>< (- ) an attribute value
x 2 ⇡>< (X) a tuple of attribute values
k 2 ⇡>< (K) a tuple of context attribute values
⌧ causal diagram
h", Pr(u) i probabilistic causal model
$X x potential outcome
Pr(V = v), Pr(v) joint probability distribution
Pr(>X x) abbreviates Pr($X x = >)
Table 1: Notation used in this paper.

demonstrates the accuracy and correctness of the explanation
scores and actionable recourse that L���� generates.

2 PRELIMINARIES
The notation we use in this paper is summarized in Table 1. We
denote variables by uppercase letters, - ,. ,/ ,+ ; their values with
lowercase letters, G,~, I,E ; and sets of variables or values using
boldface (X or x). The domain of a variable - is ⇡><(- ), and
the domain of a set of variables is ⇡><(X) = Œ

- 2X ⇡><(- ). All
domains are discrete and� nite; continuous domains are assumed to
be binned. We use Pr(x) to represent a joint probability distribution
Pr(X = x). The basic semantic framework of our proposal rests on
probabilistic causal models [71], which we review next.

Probabilistic causalmodels.A probabilistic causalmodel (PCM)
is a tuple h", Pr(u)i, where " = hU,V, Fi is a causal model con-
sisting of a set of observable or endogenous variables V and a set
of background or exogenous variables U that are outside of the
model, and F = (�- )- 2V is a set of structural equations of the
form �- : ⇡><(PaV (- ))⇥ ⇡><(PaU (- ))! ⇡><(- ), where
PaU (- ) ✓ U and PaV (- ) ✓ V � {- } are called exogenous par-
ents and endogenous parents of - , respectively. The values of U
are drawn from the distribution Pr(u). A PCM h", Pr(u)i can be
represented as a directed graph⌧ = hV, Ei, called a causal diagram,
where each node represents a variable, and there are directed edges
from the elements of PaU (- ) [ PaV (- ) to - . We say a variable /
is a descendant of another variable - if / is caused (either directly
or indirectly) by - , i.e., if there is a directed edge or path from - to
/ in ⌧ ; otherwise, we say that / is a non-descendant of - .

Interventions and potential outcomes. An intervention or
an action on a set of variables X ✓ V, denoted X  x, is an
operation that modi�es the underlying causal model by replacing
the structural equations associated with X with a constant x 2
⇡><(X). The potential outcome of a variable. after the intervention
X x in a context u 2 ⇡><(U), denoted .X x (u), is the solution
to . in the modi�ed set of structural equations. Potential outcomes
satisfy the following consistency rule used in derivations presented
in Section 4.1.

X(u) = x =) .X x (u) = ~ (2)

This rule states that in contexts where X = x, the outcome is invari-
ant to the intervention X x. For example, changing the income
level of applicants to high does not change the loan decisions for
those who already had high income before the intervention.

The distribution Pr(u) induces a probability distribution over
endogenous variables and potential outcomes. Using PCMs, one
can express counterfactual queries of the form Pr(.X x = ~ | k), or
simply Pr(~X x | k); this reads as “For contexts with attributes k,
what is the probability that we would observe . = ~ had X been
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Figure 2: A causal diagram for Example 1.1.

x?" and is given by the following expression:
Pr(~X x | k) =

’
u

Pr(~X x (u)) Pr(u | k) (3)

Equation (3) readily suggests Pearl’s three-step procedure for an-
swering counterfactual queries [71][Chapter 7]: (1) update Pr(u) to
obtain Pr(u | k) (abduction), (2) modify the causal model to re�ect
the intervention X x (action), and (3) evaluate the RHS of (3)
using the index function Pr(.X x (u) = ~) (prediction). However,
performing this procedure requires the underlying PCM to be fully
observed, i.e, the distribution Pr(u) and the underlying structural
equations must be known, which is an impractical requirement.
In this paper, we assume that only background knowledge of the
underlying causal diagram is available, but exogenous variables
and structural equations are unknown.

The do-operator. For causal diagrams, Pearl de�ned the do-
operator as a graphical operation that gives semantics to inter-
ventional queries of the form “What is the probability that we
would observe . = ~ (at population-level) had X been x?", denoted
Pr(y | do(x)). Further, he proved a set of necessary and su�cient
conditions under which interventional queries can be answered us-
ing historical data. A su�cient condition is the backdoor-criterion,
which states that if there exists a set of variables C that satisfy a
graphical condition relative to X and . in the causal diagram ⌧ ,
the following holds (see [71][Chapter 3] for details):

Pr(y | do(x)) =
’

c2⇡>< (C)
Pr(y | c, x) Pr(c) (4)

In contrast to (3), notice that the RHS of (4) is expressed in terms
of observed probabilities and can be estimated from historical data
using existing statistical and ML algorithms.

Counterfactuals vs. interventional queries.The do-operator
is a population-level operator, meaning it can only express queries
about the e�ect of an intervention at population level; in contrast,
counterfactuals can express queries about the e�ect of an inter-
vention on a sub-population or an individual. Therefore, every
interventional query can be expressed in terms of counterfactu-
als, but not vice versa (see [74][Chapter 4],[6] for more details).
For instance, Pr(~ | do(x)) = Pr(~X x); however, the counterfac-
tual query Pr(~X x | x0,~0), which asks about the e�ect of the
intervention X x on a sub-population with attributes x0 and ~0,
cannot be expressed in terms of the do-operator (see Example 2.1
below). Note that the probabilistic contrastive counterfactual state-
ments in (1), used throughout this paper to explain a black-box
decision-making system concerned with the e�ect of interventions
at sub-population and individual levels, cannot be expressed using
the do-operator and therefore cannot be assessed in general when
the underlying probabilistic causal models are not fully observed.
Nevertheless, in Section 4.1 we establish conditions under which
these counterfactuals can be estimated or bounded using data.

Example 2.1. Continuing Example 1.1, Figure 2 represents a sim-
ple causal diagram for the loan application domain, where ⌧ cor-
responds to the attribute gender, � to age, ⇡ to the repayment
duration in months, $ to the decision of a loan application, and
' compactly represents the rest of the attributes, e.g., status of
checking account, employment, savings, etc. Note that the loan
decision is binary: $ = 1 and $ = 0 indicate whether the loan
has been approved or not, respectively. The interventional query
Pr($ = 1 | do(⇡ = 24 months)) that is equivalent to the counterfac-
tual Pr($⇡ 24 months = 1) reads as “What is the probability of loan
approval at population-level had all applicants selected repayment
duration of 24 months?" This query can be answered using data and
the causal diagram (since {⌧,� } satis�es the backdoor-criterion
in the causal diagram in Figure 2). However, the counterfactual
query Pr($⇡ 24 months = 1 | $ = 0), which reads as ‘What is the
probability of loan approval for a group of applicants whose loan
applications were denied had they selected a repayment duration
of 24 months?", cannot be expressed using the do-operator.

3 EXPLANATIONS AND RECOURSE USING
PROBABILISTIC COUNTERFACTUALS

In this section, we introduce three measures to quantify the in�u-
ence of an attribute on decisions made by an algorithm (Section 3.1).
We then use these measures to generate di�erent types of explana-
tions for algorithmic systems (Section 3.2).

3.1 Explanation Scores
We are given a decision-making algorithm 5 : ⇡><(I) ! ⇡><($),
where I is set of input attributes (a.k.a. features for ML algorithms)
and $ is a binary attribute, where $ = > denotes the positive
decision (loan approved) and $ = > 0 denotes the negative decision
(loan denied). Let us assume we are given a PCM h", Pr(u)i with a
corresponding causal diagram ⌧ (this assumption will be relaxed
in Section 4.1) such that I ✓ V, i.e., the inputs of 5 are a subset of
the observed attributes. Consider an attribute - 2 V and a pair
of attribute values G,G 0 2 ⇡><(- ). We quantify the in�uence of
the attribute value G relative to a baseline G 0 on decisions made
by an algorithm using the following scores, herein referred to as
explanation scores; (we implicitly assume an order G > G 0).

De�nition 3.1 (Explanation Scores). Given a PCM h", Pr(u)i and
an algorithm 5 : ⇡><(X) ! ⇡><($), a variable - 2 V, and a
pair of attribute values G,G 0 2 ⇡><(- ), we quantify the in�uence
of G relative to G 0 on the algorithm’s decisions in the context k 2
⇡><(K), where K ✓ V � {- ,$ }, using the following measures:

• The necessity score:

N��G
0

G (k) def= Pr(> 0- G 0 | G,>, k) (5)

• The su�ciency score:

S��G
0

G (k) def= Pr(>- G | G 0,> 0, k) (6)

• The necessity and su�ciency score:

N�S��G
0

G (k) def= Pr(>- G ,>
0
- G 0 | k), (7)
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where the distribution Pr(>- G ) is well-de�ned and can be com-
puted from the algorithm 5 (I).2

For simplicity of notation, we drop G 0 from N��G
0

G , S��G
0

G and
N�S��G

0
G whenever it is clear from the context. The necessity score

in (5) formalizes the probabilistic contrastive counterfactual in (1),
where<actual-value> and<counterfactual-value> are respectively
k [ G and k [ G 0, and <actual-decision> and <foil-decision>
are respectively positive decision > and negative decision > 0. This
reads as “What is the probability that for individuals with attributes
k, the algorithm’s decision would be negative instead of positive
had - been G 0 instead of G?" In other words, N��- (.) measures the
algorithm’s percentage of positive decisions that are attributable
to or due to the attribute value G . The su�ciency score in (6) is
the dual of the necessity score; it reads as “What would be the
probability that for individuals with attributes k, the algorithm’s
decision would be positive instead of negative had - been G instead
of G 0?" Finally, the necessity and su�ciency score in (7) establishes
a balance between necessary and su�ciency; it measures the prob-
ability that the algorithm responds in both ways. Hence, it can be
used to measure the general explanatory power of an attribute. In
Section 4.1, we show that the necessary and su�ciency score is
non-zero i� - causally in�uences the algorithm’s decisions. (Note
that the explanation scores are well-de�ned for a set of attributes.)

Remark. A major di�erence between our proposal and existing
methods in XAI is the ability to account for the indirect in�uence
of attributes that may not be explicitly used in an algorithm’s deci-
sion making process, but implicitly in�uence its decisions via their
proxies. The ability to account for such in�uences is particularly
important in auditing algorithms for fairness, where typically sen-
sitive attributes, such as race or gender, are not explicitly used as
input to algorithms. For instance, in [97] Wall Street Journal investi-
gators reported that a seemingly innocent online pricing algorithm
that simply adjusts online prices based on users’ proximity to com-
petitors’ stores is discriminative against lower-income individuals.
In this case, the algorithm does not explicitly use income; however,
it turns out that living further from competitors’ stores is a proxy
for low income. 3

3.2 L����’s Explanations
Based on the explanations scores proposed in Section 3.1, L����
generates the following types of explanations.

Global, local and contextual explanations. To understand
the in�uence of each variable - 2 V on an algorithm’s decision,
L���� computes the necessity score N��G (k), su�ciency score
S��G (k), and necessity and su�ciency score N�S��G (k) for each
value G 2 ⇡><(- ) in the following contexts: (1) K = ;: the scores
measure the global in�uence of - on the algorithm’s decision. (2)
K = V: the scores measure the individual-level or local in�uence
of - on the algorithm’s decision. (3) A user-de�ned K = k with
; ( K ( V: the scores measure the contextual in�uence of - on
the algorithm’s decision. In the context k, L���� calculates the

2For deterministic 5 (I) , Pr(>- G ) =
Õ

i2⇡>< (I) {5 (i)=>} Pr(I- G = i) ,
where {5 (i)=>} is an indicator function.

3In contrast to mediational analysis in causal inference that studies direct and
indirect causal e�ects [70, 73], in this paper we are interested in quantifying the
su�ciency and necessity scores of attributes explicitly and implicitly used by the
algorithm.

explanation scores for an attribute - by computing the maximum
score over all pairs of attribute values G,G 0 2 ⇡><(- ). In addition
to singleton variables, L���� can calculate explanation scores for
any user-de�ned set of attributes.

For a given individual, L���� estimates the positive and nega-
tive contributions of a speci�c attribute value toward the outcome.
Consider an individual with a negative outcome $ = > 0 having the
attribute - = G 0. The negative contribution of G 0 is characterized
by the probability of getting a positive outcome on intervening
-  G , max

G>G 0
S��G

0
G (k), and the positive contribution of G 0 for the

individual is calculated as max
G 00<G 0

S��G
00

G 0 (k). Similarly, for an indi-

vidual with a positive outcome $ = > attribute value - = G 0, the
positive contribution of G 0 is calculated by estimating the prob-
ability of > 0 if the attribute value was intervened to be smaller
than G 0, max

G 00<G 0
N��G

00
G 0 (k) and the negative contribution of - = G 0

is max
G>G 0

N��G
0

G (k). Note that the negative contribution of attribute

- = G 0 is calculated by intervening on the individual at hand, but
the positive contribution is estimated by intervening on individ-
uals with - = G 00 to satisfy the same context k. In Figure 1, low
credit amount contributes negatively to the outcome for Maeve as
increasing credit amount improves their chances of getting the loan
approved. Attributes like credit history contribute both positively
and negatively: poor credit history worsens the chances of approval,
but improving credit history furthers the chances of better credit.

Counterfactual recourse. For individuals for whom an algo-
rithm’s decision is negative, L���� generates explanations in terms
of minimal interventions on a user-speci�ed set of actionable vari-
ables A ✓ V that have a high su�ciency score, i.e., the intervention
can produce the positive decision with high probability. The expla-
nations can be used either as justi�cation in case the decision is
challenged or as a feasible action that the individual may perform
in order to improve the outcome in the future (“recourse”). For
example, in Figure 1, the set of actionable items for Maeve may
consist of her credit amount, loan duration, savings and purpose.
Examples of speci�c actions include “increase the loan repayment
duration” or “raise the amount in savings.”

Given an individual with attributes v, a set of actionable variables
A ✓ V, and a cost function Cost (a, â) that determines the cost of
an intervention that changes A from its current value a to â, for
â 2 ⇡><(A), a counterfactual recourse can be computed using the
following optimization problem:

argmin
a2⇡>< (A)

Cost (a, â) s.t. S��â (v) � U (8)

The optimization problem in (8) treats the decision-making algo-
rithm as a black box; hence, it can be solved merely using historical
data (see Section 4.2). The solutions to this problem provide end-
users with informative, feasible and actionable explanations and
recourse by answering questions such as “What are the best courses
of action that, if performed in the real world, would with high prob-
ability change the outcome for this individual?”

4 PROPERTIES AND ALGORITHMS
In this section, we study properties of the explanation scores in Sec-
tion 3 and establish conditions under which they can be bounded
or estimated from historical data (Section 4.1). We then develop
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an algorithm for solving the optimization problem for computing
counterfactual recourse (Section 4.2).

4.1 Computing Explanation Scores
Recall from Section 2 that if the underlying PCM is fully speci-
�ed, i.e., the structural equations and the exogenous variables are
observed, then counterfactual queries, and hence the explanation
scores, can be computed via Equation (3). However, in many ap-
plications, PCMs are not fully observed, and one must estimate
explanation scores from data. First, we prove the following bounds
on explanation scores, computed for a set of attributes X.

P����������4.1. Given a PCM h", Pr(u)i with a correspond-
ing causal DAG ⌧ , an algorithm 5 : ⇡><(I) ! ⇡><($), and a
set of attributes X ✓ V � {$} with two sets of attribute values
x, x0 2 ⇡><(X), if K consists of non-descendants of I in ⌧ , then
the explanation score can be bounded as follows:

max
©≠≠≠
´
0,

Pr(>, x | k)+Pr(>, x0 | k)
� Pr(> | do(x0), k)
Pr(>, x | k)

™ÆÆÆ
¨
N��x (k)  min

©≠≠≠
´

Pr(>0 | do(x0), k)
� Pr(>0, x0 | k)
Pr(>, x | k) , 1

™ÆÆÆ
¨

(9)

max
©≠≠≠
´
0,

Pr(>0, x | k)+Pr(>0, x0 | k)
� Pr(>0 | do(x), k)

Pr(>0,G0 | k)
™ÆÆÆ
¨
S��x (k)  min

©≠≠≠
´

Pr(> | do(x), k)
� Pr(>,G | k)

Pr(>0,G0 | k) , 1
™ÆÆÆ
¨

(10)

max
⇣
0, Pr(> | do(x), k)

� Pr(> | do(x0), k)
⌘
N�S��x (k)  min

⇣ Pr(> | do(x), k),
Pr(>0 | do(x0), k)

⌘
(11)

P����. We prove the bounds for (9); (10) and (11) are proved
similarly. The following equations are obtained from the law of
total probability:
Pr(>0X x, x, k) = Pr(>0X x,>

0
X x0 , x, k) + Pr(>0X x,>X x0 , x, k) (12)

Pr(>0X x0 , x, k) = Pr(>0X x0 ,>
0
X x, x, k) + Pr(>0X x0 ,>X x, x, k) (13)

Pr(>0X x0 , k) = Pr(>0X x0 , x, k) + Pr(>0X x0 , x
0, k) +

’
G002⇡>< (- )�{G ,G0}

Pr(>0X x0 , x
00, k)

(14)

By rearranging (12) and (13), we obtain the following equality:
Pr(>0X x0 ,>X x, x, k) = Pr(>0X x0 , x, k) � Pr(>

0
X x, x, k) + Pr(>0X x,>X x0 , x, k) (15)

The following bounds for the LHS of (15) are obtained from the
Fréchet bound.4

!�( � Pr(>0X x0 , k) � Pr(>
0, x0, k) � Pr(>0X x, x, k) �

’
G002⇡>< (X)�{x,x0}

Pr(>0X x0 , x
00, k)

(obtained from Eq. (14) and (2), lower bounding Pr(>0X x,>X x0 , x, k))
� Pr(>0X x0 , k) � Pr(>

0,G ,k) � Pr(>0,G0, k) � Pr(k) + Pr(G, k) + Pr(G0, k)
= Pr(>0X x0 , k) + Pr(>,G, k) + Pr(>,G 0, k) � Pr(k)
= Pr(>,G, k) + Pr(>,G 0, k) � Pr(>X x0 , k) (16)

!�(  Pr(>0X x0 , x, k) � Pr(>
0
X x, x, k) + Pr(>X x0 , x, k) = Pr(>, x, k) (17)

(obtained by upper bounding Pr(>0X x,>X x0 , x, k) in Eq. (15)

!�(  Pr(>0X x0 , k) � Pr(>
0, x0, k) �

’
G002⇡>< (- )�{G ,G0}

Pr(>0X x0 , x
00, k)

(obtained from Eq. (14) and (2), upper bounding Pr(>0X x,>X x0 , x, k))
 Pr(>0X x0 , k) � Pr(>

0, x0, k) (18)

Equation (9) is obtained by dividing (16), (17) and (18) by Pr(>, x, k),
applying the consistency rule (2), and considering the fact that since
K consists of non-descendants of X, the intervention X x0 does
not change K; hence, Pr(>X x0 | k) = Pr(> | do(x0), k).

⇤
4max

�
0,
Õ

G2X Pr(G) � ( |x | � 1)
�
 Pr(x)  minG2x Pr(G)

Proposition 4.1 shows the explanation scores can be bounded
whenever interventional queries of the form Pr(> | do(x), k) can be
estimated from historical data using the underlying causal diagram
⌧ (cf. Section 2). The next proposition further shows that if the
algorithm is monotone relative to x, x0 2 ⇡><(X), i.e., if x > x0,
then $X x � $X x0

5, and the exact value of the explanation
scores can be computed from data. (In case the ordering between x
and x0 is not known apriori (e.g., for categorical values), we infer it
by comparing the output of the algorithm for x and x0.)

P����������4.2. Given a causal diagram ⌧ , if the decision-
making algorithm 5 : ⇡><(I) ! ⇡><($) is monotone relative to
x, x0 2 ⇡><(X) and if there exists a set of variablesC ✓ V�{K[X}
such that C [ K satis�es the backdoor-criterion relative to X and I
in ⌧ , the following holds:

N��x (k) =

⇣ Õ
22⇡>< (C) Pr(>0 | c, x0, k) Pr(c | x, k)

⌘
� Pr(>0 | x, k)

Pr(> | x, k) (19)

S��x (k) =

⇣ Õ
c2⇡>< (C) Pr(> | c, x, k)Pr(c | x0, k)

⌘
� Pr(> | x0, k)

Pr(>0 | x0, k) (20)

N�S��x (k) =
’

c2⇡>< (C)

�
Pr(> | x, k, c) � Pr(> | x0, c, k)

�
Pr(c | k) (21)

Proposition 4.2 facilitates bounding and estimating explanation
scores from historical data when the underlying probabilistic causal
models are not fully speci�ed but background knowledge on the
causal diagram is available. (See Section 6 for a discussion about the
absence of causal diagrams). We establish the following connection
between the explanation scores.

P����������4.3. Explanation scores are related through the
following inequality. For a binary - , the inequality becomes an
equality.

N�S��x (k)  Pr(>, x | k) N��x (k) + Pr(>0, x0 | k) S��x (k) + 1 � Pr(x | k) � Pr(x0 | k)
(22)

Therefore, for binary attributes, the necessary and su�ciency
score can be seen as the weighted sum of necessary and su�ciency
scores. Furthermore, the lower bound for the necessity and su�-
ciency score in Equation (11) is called the (conditional) causal e�ect
of - on $ [72]. Hence, if the causal e�ect of - on the algorithm’s
decision is non-zero, then so is the necessity and su�ciency score
(for a binary - , it is implied from (22) that at least one of the su�-
ciency and necessity scores must also be non-zero). The following
proposition shows the converse.

P����������4.4. Given a PCM h", Pr(u)i with a correspond-
ing causal DAG ⌧ , an algorithm 5 : ⇡><(Z) ! ⇡><($) and an
attribute - 2 V, if $ is a non-descendant of - , i.e., there is no
causal path from - to $ , then for all (G,G 0) 2 ⇡><(- ) and for
all contexts k 2 ⇡><(K), where K ✓ V � {- ,$ } , it holds that
N��G (k) = S��G (k) = N�S��G (k) = 0.

Extensions to multi-class classi�cation and regression. For
multi-valued outcomes, i.e., ⇡><($) = {>1, . . . , >W }, we assume an
ordering of the values >1 > . . . > >W such that >8 > > 9 implies
that >8 is more desirable than > 9 . This assumption holds in tasks
where certain outcomes are favored over others and holds for real-
valued outcomes that have a natural ordering of values.We partition
⇡><($) into sets $< and $� where $< denotes the set of values
less than > and $� denotes the set of values greater than > . Note

5Monotonicity expresses the assumption that changing X from x0 to x cannot
change the algorithm’s decision from positive to negative; increasing X always helps.
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that we do not require a strict ordering of the values and can simply
partition them as favorable and unfavorable. In these settings, we
rede�ne the explanation scores with respect to each outcome value
> . For example, necessity score is de�ned as the probability that
the outcome$ changes from a value greater than or equal to > to a
value lower than > upon the intervention -  G 0:

N��G
0

G (k,>) def= Pr($<
- G0 | G,$

�, k)

The other two scores can be extended in a similar fashion. Our
propositions extend to these settings and can be directly used to
evaluate the explanation scores using observational data.
4.2 Computing Counterfactual Recourse
Here, we describe the solution to the optimization problem dis-
cussed in (8) for providing an actionable recourse. We formulate our
problem as a combinatorial optimization problem over the domain
of actionable variables and express it as an integer programming
(IP) problem of the form:

argmin
â2⇡>< (A)

’
�2A

©≠
´
q�

’
02⇡>< (�)

X0
™Æ
¨

(23)

subject to S��â (v) � U (24)’
02⇡>< (�)

X0  1, 8� 2 A (25)

X0 2 {0, 1}, 80 2 ⇡>< (�),� 2 A (26)

The objective function in the preceding IP is modeled as a lin-
ear function over the cost of actions over individual actionable
variables. q� is a convex cost function that measures the cost of
changing � = 0 to � = 0̂, for each � 2 � (q� = 0 when no action
is taken on �) and can be predetermined as 0̂ deviates from 0 (e.g.,
the cost could increase linearly or quadratically with increasing
deviation from � = 0). Constraint (24) ensures that action â will
result in a su�ciency score greater than the user-de�ned threshold
U . In other words, the intervention A â can lead to the positive
outcome with a probability of at least U . Constraint (25) and in-
dicator variables X0 ensure that of all values in the domain of an
actionable variable, only one is acted upon (or changed). Note that
the IP formulation ensures that multiple actions can be taken at the
same time. In particular, when X0 = 0, 80 2 ⇡><(�), 8� 2 A, it
implies no action is taken since (24) is already satis�ed. To compute
the su�ciency score in (24) from historical data, we rewrite it as
S��â (k [ a) � U , where K consists of all non-descendants of A in
the underlying causal diagram⌧ , and we assume thatK satis�es the
backdoor-criterion relative to$ and A (cf. Section 2). (See Section 6
for a discussion about violation of the assumptions.) Then, we can
incorporate the lower bound obtained for the su�ciency score in
Proposition 4.2 in the optimization problem, as follows:

Pr(> | â, k) � Pr(> | a, k) + U Pr(>0 | a, k) (27)

Since k, a,U are constant, the RHS of (27) is also constant and can
be pre-computed from data. We estimate the logit transformation of
Pr(> | â, k) and model it as a linear regression equation. This allows
us to express (27) as a linear inequality constraint for the IP in (23).
If a solution to the IP is found, then an action is performed on each
variable for which the indicator variable has a non-zero assignment.
The solution to this optimization problem can be seen as a recourse
that can change the outcome of the algorithmwith high probability for
individuals with attributes k for which the algorithm made a negative
decision. Note that the number of constraints in this formulation
grows linearly with the number of actionable variables (which is
usually a much smaller subset of an individual’s attributes).

Dataset Att. [#] Rows[#] Global Local Recourse

Adult [53] 14 48k 7.5 4.2 3.7
German [21] 20 1k 0.75 0.42 2.24
COMPAS [1] 7 5.2k 2.03 1.34 -
Drug [21] 13 1886 1.25 0.84 -
German-syn 6 10k 1.35 1.01 1.65

Table 2: Runtime in seconds for experiments in Sec. 5.3.

5 EXPERIMENTS
This section presents experiments that evaluate the e�ectiveness
of L����. We answer the following questions. Q1: What is the
end-to-end performance of L���� in terms of gaining insight into
black-boxmachine learning algorithms? How does the performance
of L���� change with varying machine learning algorithms? Q2:
How does L���� compare to state-of-the-art methods in XAI? Q3:
To what extent are the explanations and recourse options generated
by L���� correct?

5.1 Datasets
We used the following ML benchmark datasets (also in Table 2):
German Credit Data (German) [21]. This dataset consists of
records of bank account holders with their personal,� nancial and
demographic information. The prediction task classi�es individuals
as good/bad credit risks.
Adult Income Data (Adult) [21]. This dataset contains demo-
graphic information of individuals along with information on their
level of education, occupation, working hours etc. The task is to
predict whether the annual income of an individual exceeds 50K.
COMPAS [1]. This dataset contains information on o�enders
from Broward County, Florida. We consider the task of predict-
ing whether an individual will recommit a crime within two years.
Drug Consumption (Drug) [21]. This dataset contains demo-
graphic information and personality traits (e.g., openness, sensation-
seeking) of individuals. We consider a multi-class classi�cation task
of predicting when an individual consumed magic mushrooms:
(i) never, (ii) more than a decade ago, and (iii) in the last decade.
German-syn. We generate synthetic data following the causal
graph of the German dataset. The black-box algorithm runs random
forest regressor to predict credit risk score within the range [0, 1]
where 1 denotes the best and 0 denotes the worst credit risk. We use
this dataset to evaluate the correctness of L����’s scores compared
to ground truth scores calculated using the structural equations.
5.2 Setup
We considered four black-boxmachine learning algorithms: random
forest classi�er [94], random forest regression [94], XGBoost [95],
and a feed forward neural network [93]. We used causal diagrams
presented in [12] for the Adult and German datasets and in [69]
for COMPAS. For the Drug dataset, Country, Age, Gender and
Ethnicity are considered root nodes that a�ect the outcome and
other attributes; the outcome is also a�ected by all other attributes.
We implemented our scores and the recourse algorithm in Python.
We split each dataset into training and test data, learned a black-box
algorithm (random forest classi�er unless stated otherwise) over
training data, and estimated conditional probabilities in (19)-(21)
by regressing over test data predictions. We report explanation
scores for each dataset under di�erent scenarios. To present local
explanations, we report the positive and negative contributions of
an attribute value toward the current outcome (e.g., in Figure 5,
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a) German b) Adult c) Compas – Software score d) Drug

Figure 3: Global explanations generated by L����, ranking attributes in terms of their necessity, su�ciency and necessity and
su�ciency scores. The rankings are consistent with insights from existing literature.

bars to the left (right) represent negative (positive) contributions
of attribute values). To recommend recourse to individuals who
receive a negative decision, we generate a set of actions with the
minimal cost that, if taken, can change the algorithm’s decision for
them in the future with a user-de�ned probability threshold U .

5.3 End-to-End Performance
In the following experiments, we present the local, contextual and
global explanations and recourse options generated by L����. In
the absence of ground truth, we discuss the coherence of our results
with intuitions from existing literature. Table 2 reports the running
time of L���� for computing explanations and recourse.
German. Consider the attributes status and credit_history in
Figure 3a. Their near-perfect su�ciency scores indicate their high
importance toward a positive outcome at the population level. For
individuals for whom the algorithm generated a negative outcome,
an increase in their credit history or maintaining above the rec-
ommended daily minimum in checking accounts (status) is more
likely to result in a positive decision compared to other attributes
such as housing or age. These scores and the low necessity scores
of attributes are aligned with our intuition about good credit risks:
(a) good credit history and continued good status of checking ac-
counts add to the credibility of individuals in repaying their loans,
and (b) multiple attributes favor good credit and a reduction in any
single attribute is less likely to overturn the decision.

We report the local explanations generated by L���� in Fig-
ures 8a and 8b. In the real world, younger individuals and indi-
viduals with inadequate employment experience or insu�cient
daily minimum amount in checking accounts are less likely to be
considered good credit risks. This observation is evidenced in the
negative contribution of status, age and employment for the nega-
tive outcome example. For the positive outcome example, current
attribute values contribute toward the favorable outcome. Since
increasing any of them is unlikely to further improve the outcome,
the values do not have a negative contribution. Figure 1 presents

a) E�ect of marital on di�erent
age groups. (Adult)

b) E�ect of juvenile crime on
race. (COMPAS)

Figure 4: L����’s contextual explanations show the e�ect of
intervening on an attribute over di�erent sub-populations.

an example actionable recourse scenario, suggesting an increase in
savings, credit amount and purpose improves credit risk.
Adult. Several studies [92, 103] have analyzed the impact of gender
and age in this dataset. The dataset has been shown to be inconsis-
tent: income attributes for married individuals report household
income, and there are more married males in the dataset indicating
a favorable bias toward males [81]. We, therefore, expect age to be a
necessary cause for higher income, but it may not be su�cient since
increasing age does not imply that an individual is married. This
intuition is substantiated by the high necessity and low su�ciency
scores of age in Figure 3b. Furthermore, as shown in Figure 4a,
changing marital status to a higher value has a greater e�ect on
older than on younger individuals; this e�ect can be attributed
to the fact that compared to early-career individuals, mid-career
individuals typically contribute more to joint household income.
Consequently, for an individual with a negative outcome (Figure 8c),
marital status and age contribute toward the negative outcome. For
an individual with a positive outcome (Figure 8d), changing any

Research Data Management Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

584



a) Negative outcome example. b) Positive outcome example.

Figure 5: L����’s local explanations. (Drug)

attribute value is less likely to improve the outcome. However, in-
creasing working hours will further the favorable outcome with a
higher probability. We calculated the recourse for the individual
with negative outcome and identi�ed that increasing the hours to
more than 42 would result in a high-income prediction.
COMPAS. In the global explanation scores generated by L���� for
the COMPAS software used in courts (Figure 3c), the highest score
of priors_ct validates the insights of previous studies [1, 84] that
the number of prior crimes is one of the most important factors
determining chances of recidivism. Figure 4b presents the e�ect of
intervening on juvenile felonies count on the software score (for
these explanations, we use prediction scores from the COMPAS
software, not the classi�er output). The higher su�ciency for Blacks
compared to Whites indicates that an increase in juvenile crimes
is more detrimental for the former. A reduction in the number,
however, bene�ts the latter more, thereby validating the inherent
bias in COMPAS scores. We did not perform recourse analysis as the
attributes describe past crimes and, therefore, are not actionable.
Drug. This dataset has been studied to understand the variation in
drug patterns across demographics and the e�ectiveness of various
sensation measurement features toward predicting drug usage. Fig-
ure 3d compares the global scores with respect to the outcome that
the drug was used atleast once in lifetime. Previous studies [23]
have found that consumption of the particular drug is common
in certain countries, as substantiated by the high necessity and
su�ciency scores of country. Furthermore, intuitively, individuals
with a higher level of education are more likely to be aware of
the e�ects of drug abuse and hence, less likely to indulge in its
consumption. This intuition is supported by the observation in
Figure 5a: a higher education level contributes toward the negative
drug consumption outcome, and in Figure 5b: a lower education
level contributes positively toward the drug consumption outcome.
We observe similar conclusions for the explanations with respect
to a di�erent outcome such as drug used in the last decade.

Generalizability of L���� to black-box algorithms. In Fig-
ure 6, we present the global explanations generated by L���� for
black-box algorithms that are harder to interpret and are likely to

a) Adult + XGBoost b) Adult + Neural Networks

Figure 6: Generalizability of L���� to black-box algorithms.

violate the monotonicity assumption, such as XGBoost and feed
forward neural networks, and report the necessity and su�ciency
score for each classi�er. For ease in deploying neural networks, we
conducted this set of experiments on Adult which is our largest
dataset. We observed that di�erent classi�ers rank attributes dif-
ferently depending upon the attributes they deem important. For
example, the neural network learns class as the most important
attribute. Since country and sex have a causal e�ect on class, L����
ranks these three attributes higher than others (see Section 5.4 for
a detailed interpretation of the results).

Key takeaways. (1) The explanations generated by L���� capture
causal dependencies between attributes, and are applicable to any
black-box algorithm. (2) L���� has proved e�ective in determin-
ing attributes causally responsible for a favorable outcome. (3) Its
contextual explanations, that show the e�ect of particular interven-
tions on sub-populations, are aligned with previous studies. (4) The
local explanations o�er� ne-grained insights into the contribution
of attribute values toward the outcome of an individual. (5) For indi-
viduals with an unfavorable outcome, whenever applicable, L����
provides recourse in the form of actionable interventions.

5.4 Comparing L���� to Other Approaches
We compared the global and local explanations generated by L����
to existing approaches used for interpretingML algorithms: SHAP [59],
LIME [75] and feature importance (Feat) [11]. SHAP explains the
di�erence between a prediction and the global average prediction,
LIME explains the di�erence from a local average prediction, and
Feat measures the increase in an algorithm’s prediction error after
permutating an attribute’s values. LIME provides local explanations,
Feat provides global explanations and SHAP generates both global
and local explanations. LIME and SHAP provide marginal contri-
bution of an attribute to classi�er prediction and are not directly
comparable to L����’s probabilistic scores. However, since all the
methods measure the importance of attributes in classi�er predic-
tions, we report the relative ranking of attributes generated on their
normalized scores, and present a subset of attributes ranked high
by any of the methods. We report the maximum N�S��G score of
an attribute obtained by L���� on all of its value pairs. We also
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a) German b) Adult c) Compas – Software score d) Drug

Figure 7: Comparing di�erent global explanation methods: SHAP and Feat fail to account for causal relationships in the data
that are e�ectively captured by L����.

compared the recourse generated by L���� with LinearIP. (We
contacted the authors of [46] but do not use it in evaluation since
their technique does not work for categorical actionable variables).
We used open-source implementations of the respective techniques.
German. In Figure 7a, note that housing is ranked higher by
L���� than by Feat and SHAP. The di�erence lies in the data:
housing=own is highly correlated with a positive outcome. How-
ever, due to a skewed distribution (there are ⇠ 10% of instances
where housing=own), random permutations of housing do not gen-
erate new instances, and Feat is unable to identify it as an important
attribute. L���� uses the underlying causal graph to capture the
causal relationship between the two attributes.

In Figures 8a and 8b, we report the rankings obtained by LIME,
SHAP and L���� on two instances that respectively have negative
and positive predicted outcomes. Employment, age and account
status have a high negative contribution toward the outcome in
Figure 8a, indicating that increasing them is likely to reverse the de-
cision. Intuitively, with age, continued employment and improved
account status, individuals tend to have better savings, credit his-
tory, housing, etc., which, in turn, contribute toward a positive out-
come. L����’s ranking captures this causal dependency between
the attributes, which is recorded by neither SHAP nor LIME.

To compare recourse generated by L���� and LinearIP, we
tested them on the example for Maeve in Figure 1. While both the
methods identify the same solution for small thresholds, LinearIP
did not return any solution for success threshold > 0.8. In contrast
to L���� that generalizes to black-box algorithms, LinearIP de-
pends on linear classi�ers and o�ers recommendations that do not
account for the causal relationship between attributes.
Adult. In Figure 7b, the ranking of attributes generated by L����
and Feat matches observations in prior literature that consider
occupation, education and marital status to be the most important
attributes. However, SHAP picks on the correlation of age with mari-
tal status and occupation (older individuals are more likely to be
married and have better jobs), and ranks it higher. The rankings are
similar for XGBoost (Figure 6a) and Random forest (Figure 7b) but

di�erent for the neural network (Figure 6b). We investigated the
outputs and observed that the prediction of neural networks di�ers
from that of random forest and XGBoost for more than 20% of the
test samples, leading to varied ranking of attributes. Additionally,
the class of an individual is ranked important by the classi�er. Since
country and sex have a causal impact on class, it justi�es their high
ranks as generated by L����. In Figure 6b, we do not report the
scores for Feat as it does not support neural networks.

In Figures 8c and 8d, we compare L���� with local explanation
methods LIME and SHAP. Consistent with existing studies, L����
recognizes the negative contribution of unmarried marital status
and positive contribution of sex=male toward the negative outcome.
For the positive outcome example, L���� identi�es that age, sex
and country have a high positive contribution toward the outcome
due to their causal impact on attributes such as occupation and
marital status (ranked higher by SHAP and LIME). We also observed
that the results of SHAP are not stable across di�erent iterations.
COMPAS. Since COMPAS scores were calculated based on crimi-
nal history and indications of juvenile delinquency [1], the higher
ranking of juvenile crime history by L���� is justi�ed in Figure 7c.
Bias penetrated into the system due to the correlation between de-
mographic and non-demographic attributes. SHAP and Feat capture
this correlation and rank age higher than juvenile crime history.
Drug. Figure 7d shows that all techniques have a similar ordering
of attributes with country and age being most crucial for the desired
outcome. Comparing the local explanations of L���� with SHAP

and LIME (Figure 5), we observe that L���� correctly identi�es the
negative contribution of higher education toward negative drug
consumption prediction and the positive contribution of a lower
level of education toward a positive drug consumption prediction.

5.5 Correctness of L����’s explanations
Since ground truth is not available in real-world data, we evaluate
the correctness of L���� on the German-Syn dataset.
Correctness of estimated scores. In Figure 9a, we compare the
global explanation scores of di�erent variables with ground truth
necessity and su�ciency score estimated using Pearl’s three-step
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a) Negative outcome (German) b) Positive outcome (German) c) Negative outcome (Adult) d) Positive outcome (Adult)

Figure 8: Comparing di�erent local explanation methods. SHAP and LIME explain the output of an instance in terms of its
di�erence from the global or local average prediction; L���� explains it in terms of the underlying causal graph.

procedure discussed in equation (3) (Section 2). We present the
comparison for a non-linear regression based black-box algorithm
with respect to outcome > = 0.5. The average global explanation
scores returned by L���� are consistently similar to ground truth
estimates, thereby validating the correctness of Proposition 4.2.
SHAP and Feat capture the correlation between the input and output
attributes, and rank Status higher than Age and Sex which are
assigned scores close to 0. These attributes do not directly impact
the output but indirectly impact it through Status and Saving.
This experiment validates the ability of L���� in capturing causal
e�ects between di�erent attributes, estimate explanation scores
accurately and present actionable insights as compared to SHAP

and Feat. To understand the e�ect of the number of samples on
the scores estimated by L����, we compare the N�S�� scores of
status for di�erent sample sizes in Figure 9b. We observe that the
variance in estimation is reduced with an increase in sample size
and scores converge to ground truth estimates for larger samples.
Robustness to violation of monotonicity. To evaluate the im-
pact of non-monotonicity on the explanation scores generated by
L����, we changed the structural equations for the causal graph
of German-Syn to simulate non-monotonic e�ect of Age on the
prediction attribute. This data was used to train random forest
and XGBoost classi�ers. We measured monotonicity violation as
⇤viol = Pr[> 0- G |>,G

0]. Note that ⇤viol = 0 implies monotonicity
and higher ⇤viol denotes higher violation of monotonicity. We ob-
served that the scores estimated by L���� di�er from ground truth
estimates by less than 5%, as long as the monotonicity violation is
less than 0.25. Furthermore, the relative ranking of the attributes
remains consistent with the ground truth ranking calculated using
equation (3). This experiment demonstrates that the explanations
generated by L���� are robust to slight violation in monotonicity.
Recourse analysis. We sampled 1000 random instances that re-
ceived negative outcomes and generated recourse (su�ciency thresh-
old U = 0.9) using L����. Each unit change in attribute value was

a) Quality of the estimates. b) E�ect of sample size on error.

Figure 9: Comparing with ground truth.

assigned unit cost. The output was evaluated with respect to the
ground truth su�ciency and cost of returned actions. In all in-
stances, L����’s output achieved more than 0.9 su�ciency with
the optimal cost. This experiment validates the optimality of the
IP formulation in generating e�ective recourse. To further test the
scalability of L����, we considered a causal graph with 100 vari-
ables and increased the number of actionable variables from 5 to
100. The number of constraints grew linearly from 6 to 101 (one
for each actionable variable and one for the su�ciency constraint),
and the running time increased from 1.65 seconds to 8.35 seconds,
demonstrating L����’s scalability to larger inputs.
6 RELATEDWORK AND DISCUSSION
Our research is mainly related to XAI work in quantifying feature
importance and counterfactual explanations.

Quantifying feature importance. Due to its strong axiomatic
guarantees, methods based on Shapley values are emerging as the
de facto approach for quantifying feature in�uence [2, 17, 26, 54,
57, 58, 62, 90]. However, several practical and epistemological is-
sues have been identi�ed with these methods. These issues arise
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primarily because existing proposals for quantifying the marginal
in�uence of an attribute do not have any causal interpretation in
general and, therefore, can lead to incorrect and misleading expla-
nations [26, 48, 62]. Another popular method for generating local
explanations is LIME (Local Interpretable Model-agnostic Explana-
tions [75], which trains an interpretable classi�er (such as linear
regression) on an instance obtained by perturbing that instance to
be explained around its neighborhood. Several issues with LIME
have also been identi�ed in the literature, including its lack of
human interpretability, its sensitivity to the choice of local pertur-
bation, and its vulnerability to adversarial attacks [4, 58, 65, 88].

Unlike existing methods, our proposal o�ers the following advan-
tages. (1) It is grounded in causality and counterfactual reasoning,
captures insights from the theoretical foundation of explanations
in philosophy, epistemology and social science, and can provide
provably correct explanations. It has been argued that humans are
selective about explanations and, depending on the context, certain
contrasts are more meaningful than others [22, 63]. The notions
of necessity and su�ciency have been shown to be strong criteria
for preferred explanatory causes [14, 32, 33, 71, 77, 78, 91]. (2) It
accounts for indirect in�uence of attributes on algorithm’s deci-
sions; the problem of quantifying indirect in�uence has received
scant attention in XAI literature (see [3] for a non-causality-based
approach). (3) It builds upon scores that are customizable and can
therefore generate explanations at the global, contextual and lo-
cal levels. (4) It can audit black-box algorithms merely by using
historical data on its input and outputs.

Counterfactual explanations. Our work is related to a line of
research that leverages counterfactuals to explainML algorithm pre-
dictions [10, 44, 51, 60, 68, 96, 100, 101]. In this context, the biggest
challenge is generating explanations that follow natural laws and
are feasible and actionable in the real world. Recent work attempts
to address feasibility use ad hoc constraints [20, 43, 56, 68, 96, 98].
However, it has been argued that feasibility is fundamentally a
causal concept [8, 44, 60]. Few attempts have been made to de-
velop a causality-based approach that can generate actionable re-
course by relying on the strong assumption that the underlying
probabilistic causal model is fully speci�ed or can be learned from
data [44, 46, 60]. Our framework extends this line of work by (1)
formally de�ning feasibility in terms of probabilistic contrastive
counterfactuals, and (2) providing a theoretical justi�cation for
taking a fully non-parametric approach for computing contrastive
counterfactuals from historical data, thereby making no assump-
tions about the internals of the decision-making algorithm and the
structural equations in the underlying probabilistic causal models.
As an independent work, Mothilal et al. [67] proposed a notion of
necessity and su�ciency scores for quantifying feature importance
that appeals to the notion of actual causation.

Logic-based methods. Our work shares some similarities with
recent work in XAI that employs tools from logic-based diagnosis
and operates with the logical representations of ML algorithms [15,
41, 87]. In this context, the fundamental concepts of prime im-
plicate/implicant are closely related to su�ciency and necessary
causation when the underlying causal model is a logical circuit [16,
19, 37, 37, 40]. However, these methods can generate explanations
only in terms of a set of attributes, are intractable in model-agnostic

settings, fail to account for the causal interaction between attributes,
and cannot go beyond deterministic algorithms.

Algorithmic fairness. The critical role of causality and back-
ground knowledge is recognized and acknowledged in the algo-
rithmic fairness literature [27, 28, 47, 49, 69, 79, 80, 82, 83, 85]. In
this context, contrastive counterfactuals have been used to capture
individual-level fairness [13, 50]. It is easy to show that the notion
of counterfactual fairness in [50] can be captured by the explana-
tion scores introduced in this paper provided that an algorithm is
counterfactually fair w.r.t. a protected attribute if the su�ciency
score and necessity score of the sensitive attribute are both zero.
Hence, L���� is useful for reasoning about individual-level fairness
and discrimination.

Probability of Causation. The metrics we introduce here for
quantifying the necessity, su�ciency and necessity and su�ciency
of an algorithm’s input for its decisions are adopted from the lit-
erature on probability of causation [14, 32, 33, 71, 77, 78, 91]. The
results developed in Section 4.1 generalize and subsume earlier
results from [71, 91] and substantially simplify their proofs.

Assumptions and limitations. Our framework relies on two
main assumptions to estimate and bound explanation scores, namely,
the availability of (1) data that is a representative sample of the
underlying population of interest, and (2) knowledge of the underly-
ing causal diagram. Dealing with non-representative samples goes
beyond the scope of this paper, but there are standard approaches
that can be adopted (see, e.g., [7]). Furthermore, L���� is designed
to work with any level of user’s background knowledge. If no back-
ground knowledge is provided, L���� assumes no-confounding,
i.e., Pr(> | do(G), k) = Pr(> | G, k) and monotonicity. Under these
assumptions, the necessity score and su�ciency score, respectively,
become Pr(>0 |x0,k)�Pr(>0 |x,k)

Pr(> |x,k) and Pr(> |x,k)�Pr(> |x0,k)
Pr(>0 |x0,k) . When com-

puted for individuals, these quantities can be interpreted as pro-
portional to the di�erence between the ratio of positive/negative
algorithmic decisions for individuals that are similar on all attributes
except for - . In other words, the quantities measure the correlation
between - and the algorithm’s decisions across similar individu-
als. This correlation can be interpreted causally only under the
no-confounding and monotonicity assumptions. Nonetheless, quan-
tifying the local in�uence of an attribute by measuring its correlation
with an algorithm’s decision across similar individuals underpins most
existing methods for generating local explanations such as Shapley
values based methods [2, 58], feature importance [90] , and LIME [75].
Approaches di�er in terms of how they measure this correlation.

In principle, background knowledge on underlying causal models
is required to generate e�ective and actionable explanations.While
this may be considered a limitation of our approach, we argue that
all existing XAI methods either explicitly or implicitly make causal
assumptions (such as those mentioned above in addition to feature
independence and the possibility of simulating interventional distribu-
tions by perturbing data or using marginal distributions). Our frame-
work replaces assumptions that are unrealistic with assumptions
about the underlying causal diagram that need not be perfect, can
be validated using historical data and background knowledge [71],
and can be learned from a mixture of historical and interventional
data [30]. In the worst case, our assumptions about generating local
explanations are similar to those of existing work.
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