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ABSTRACT

Pradhan, Romila Ph.D., Purdue University, August 2018. Guided Data Fusion. Ma-
jor Professor: Sunil Prabhakar.

While the volume and variety of data furnished by disparate data sources has

rocketed over the years, often there is little to no restraint over the quality of data

available on the Internet; data sources often provide conflicting information for the

same data item (a real-world entity or event).

Recent years have witnessed a number of data fusion systems that propose so-

lutions to consolidate multiple instances of a data item, distinguish correct from in-

correct information and present a unified, consistent and meaningful record to users.

Most of these fusion systems are focused on automatically identifying correct infor-

mation for data items. Despite their remarkable e↵ectiveness in resolving conflicts,

these fusion systems are not error-free and incorrect interpretation on certain data

items quickly propagate as false judgement on other items. This dissertation studies

techniques to incorporate user feedback and capitalize on the knowledge of relation-

ships among claims of data items to improve the e↵ectiveness of conflict resolution. In

particular, the dissertation addresses two key challenges toward guided data fusion.

The first challenge relates to integrating feedback from users to rapidly resolve

conflicts. The objective is to e↵ectively and e�ciently integrate user feedback for

maximum benefit to data fusion. For this purpose, we develop a novel framework

built on the principles of decision theory and active learning to reason about the order

in which claims should be validated by users. We propose approaches that exploit

the structure of interactions between data items and sources and o↵er interactive

validation time for users of a data fusion system.
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The second challenge relates to leveraging relations between claims of data items

to identify multiple related correct claims. The objective is to recognize existing

entity-relationships among claims and integrate them with data fusion systems that

are agnostic to data relationships. Toward this goal, we leverage knowledge rep-

resentations that encapsulate a wide range of relationship semantics and introduce

mechanisms to integrate the knowledge representation with data fusion models to

retrieve multiple correct claims that are consistent with each other.

Our experimental evaluations using real-world and synthetic datasets demonstrate

the e↵ectiveness and e�ciency of our proposed approaches to improve conflict reso-

lution of data integrated from multiple sources.
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1 INTRODUCTION

This dissertation studies techniques to improve the e�cacy and accuray of conflict

resoultion while consolidating data from disparate data sources through the judicious

inclusion of human input and exploitation of relationships present in data (among

data items, data sources and claims provided by sources on particular data items).

The objective is to present highly accurate data to end-users in an e↵ective and

e�cient manner.

With the advent of modern information systems and services, the amount and

diversity of data available on the Internet have been growing at an unprecedented

pace. Moreover, the number of sources that provide data has significantly increased,

spanning well-known sources, such as top news agencies (e.g., CNN and BBC), to

individual contributors of Wikipedia articles. In domains such as the Web, sensor

networks and social media, it is not surprising to often encounter conflicting data,

e.g., financial firms publish inconsistent stock prices of the same company [1], sensors

report conflicting measurements [2], di↵erent flight-tracking websites publish incon-

sistent ETAs (expected time of arrival for a flight), on-line bookstores list di↵erent

authors for identical books [3] and so on. In fact, misleading information has be-

come the new norm; for example, three years before the death of Steve Jobs, the

founder of Apple, a top news agency published his obituary to its corporate clients1.

Resolving such conflicts is important since inaccurate information may result in un-

favorable consequences such as financial losses due to an unfortunate drop in the

stock price of a corporation following a false obituary or missed flights due to incor-

rect status information. A perfect example of the damage inconsistent, unverified

information can inflict is the steady rise of “fake” news in the media and popular

culture. Increasingly, it is becoming di�cult for consumers to fathom whether or not

1http://fortune.com/2008/08/28/how-steve-jobs-obit-got-published/
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a particular piece of information should be trusted unambiguously. The urgency of

this matter has prompted concern from inter-governmental agencies 2,3 that consider

the dissemination of trustworthy information to be of paramount importance.

Recent years have witnessed a number of data fusion systems (see [4,5] for surveys)

that propose conflict resolution, i.e., distinguishing correct from incorrect information,

as a way to integrate inconsistent data from multiple sources. Most of the existing

data fusion techniques automatically identify correct claims for data items. Although

quite accurate, fusion systems are far from perfect and incorrect judgement about

one data item quickly trickles down in the form of faulty conclusions about other

data items. Particularly for crucial data items, such as medical data, it is essential to

distinguish correct claims from incorrect ones. To prevent the spread of inaccurate

conclusions and to ensure that fusion systems correctly determine true claims for most

data items, feedback should be integrated in the form of validation from users (domain

experts). Automated fusion techniques, when augmented with trusted validation of

true claims, are expected to steer the system toward a state of higher e�cacy.

Furthermore, even though data furnished by di↵erent sources may seem indepen-

dent of each other, there are often inherent data relationships among data sources,

data items and claims, and simply relying on users will not be enough. Consider

the example of data integrated from disparate sources where sources provide claims

at di↵erent granularities: while some sources furnish more general claims, some pro-

vide very specific details. In such cases, domain-specific databases or general purpose

knowledge bases prove the most useful in presenting how the di↵erent claims are

related. This highlights the need for strategies to incorporate the relation between

distinct claims of data items in the presence of conflicting data from multiple sources.

This dissertation seeks to answer the following questions: (1) How can we leverage

user feedback for conflict resolution in a sound manner? (2) How can we capitalize

on the knowledge of relationships among data items and sources to facilitate e�cient

2http://www.un.org/apps/news/story.asp?NewsID=56336
3http://reports.weforum.org/outlook-14/top-ten-trends-category-page/10-the-rapid-spread-of-
misinformation-online/
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use of human input? (3) How can we integrate entity-relationships among claims of

data items toward improving conflict resolution in data fusion?

In this chapter, we highlight the key challenges addressed in this dissertation

in Section 1.1 and present its contributions in Section 1.2. The structure of this

dissertations is outlined in Section 1.3.

1.1 Challenges

In this section, we highlight some of the challenges in data fusion where we focus

our discussion on two key challenges that this dissertation addresses. The challenges

are related to involving the user in the data fusion process, leveraging data rela-

tionships to expedite user interaction with fusion models and exploiting relationships

among distinct claims of data items during data fusion.

1.1.1 Involving Users During Data Fusion

Existing data fusion systems can be used to identify correct claims for data items.

However, the identified claims are not guaranteed to be correct. To instill greater

integrity in the system, we can involve users (end-users or domain experts) who can

examine the output of fusion and confirm which of the output claims are indeed

correct. However, validation of claims by users is a very expensive task. First,

it assumes access to highly accurate feedback — preferably from a domain expert.

Second, users (domain experts, more so) have limited budget of questions they can

answer and typical data fusion datasets have large number of data items and possible

claims to be verified. It, therefore, becomes crucial to present the user with the most

useful data items or claims to be validated.

The key challenge in involving user feedback is identifying the data item best

suited for validation. Since ground truth data may not always be available, we need

heuristics to quantify the benefit of validating one data item over another. This task

requires designing algorithms housed in the principles of decision theory and active
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learning to reason about the improvement in quality of fusion output and to minimize

the amount of user interaction.

1.1.2 Entity-relationships among Categorical Claims

Recent years have witnessed tremendous research e↵ors aimed at solving the prob-

lem of source selection and source dependence (copying or correlations) during inte-

gration. The problem of dependence among claimed values of data items, however,

has been unexplored to a large extent. Existing data fusion models mostly consider

claims to be independent of each other; the rare augmented models that acknowledge

inter-relationships among claims resort to ad hoc similarity measures depending on

the data type, e.g., string edit distance, numerical tolerance values, Jaccard distance

between sets and so on. This approach of impromptu similarity measures fails to

capture relationship semantics that di↵er from existing notions of similarity.

Consider the scenario of a data item for which two or more data sources provide

correct information but at di↵erent granularities, e.g., one source provides a general

claim while another reports a more specific claim. Sources providing the claims may

also exhibit di↵erent levels of agreement and disagreement, e.g., sources may broadly

agree but disagree about the specifics, or may agree on finer details and disagree on

a general level, or may disagree throughout. Single-truth data fusion models that

consider a single claim to be correct for a data item would fail to output other related

claims that are also correct. On the other hand, multi-truth data fusion models may

output correct claims that may not necessarily be consistent with each other.

Existing data fusion models would benefit from the integration of such semantic

relationships between claims during the process of conflict resolution. It is, however,

not immediately clear how to best represent the various relationship semantics and

integrate the knowledge of relationships among claims in a seamless manner across

existing data fusion models. There is, therefore, a need to utilize domain knowledge
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information on claim relationships and devise techniques to integrate this knowledge

during the data fusion process.

1.2 Summary of Contributions

We argue that in order to improve the resolution of conflicting data integrated

from disparate data sources, it is important to leverage data relationships (among data

items, sources and claims) in an e↵ective and e�cient manner. Getting users (domain

experts and otherwise) in the loop is crucial because unsupervised, automated data

fusion systems are not guaranteed to correctly identify correct claims. Furthermore,

leveraging domain-specific databases and general purpose knowledge bases to extract

data relationships is helpful in resolving data conflicts.

Specifically, this dissertation makes the following contributions:

• We propose a novel user feedback framework that integrates user input in the

form of ground truth labels of claims to rapidly improve the performance of

conflict resolution systems. The framework is built on principles of decision

theory and active learning to e↵ectively and e�ciently solicit validation of cor-

rect claims from the user. The objective is to involve users in an interactive

pay-as-you-go manner to validate claims that are most beneficial in resolving

conflicts. To assess claims e�ciently, we delve into relationships among the

data items and sources and generate the data item best suited for validation.

We implemented a research prototype of the proposed solution demonstrating

its applicability, and conducted experimental studies using real-world data to

validate its e↵ectiveness.

• We propose incorporating entity-relationships among claims during the process

of data fusion where data items may have multiple correct claims. Our frame-

work represents the knowledge of these entity-relationships in the form of an

arbitrary directed graph which can be pre-processed for e↵ective representation

of relationships and e�cient navigation during fusion. We propose modifica-
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tions to existing data fusion models for seamless integration of the directed

graph of data relationships and propose an approach to generate consistent cor-

rect claims for each data item. We implemented our general approach on top

of existing fusion models and through experiments on real data, demonstrated

its e↵ectiveness in identifying multiple related truths.

1.3 Outline

The rest of the dissertation is organized as follows: Chapter 2 reviews the related

work in this area and Chapter 3 presents the data model and existing data fusion

models that form the basis of this dissertation. Chapter 4 describes the framework

for e↵ectively integrating human input into data fusion systems. In Chapter 5, we

introduce the approach to incorporate the knowledge of entity-relationships among

claims of data items. We outline directions for future work in Chapter 6 and conclude

this dissertation in Chapter 7.
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2 RELATED WORK

Integrating data from disparate data sources in a bid to present users with consistent

and correct data has been the focus of a large body of research for decades. In this

chapter, we briefly review these research e↵orts. Our work is related to the following

research areas: (i) conflict resolution in data fusion, (ii) leveraging user interaction,

and (iii) leveraging intrinsic relations present in the data.

2.1 Conflict Resolution Systems

The problem of conflict resolution as a way to integrate conflicting data from a

multitude of data sources has been extensively studied in the past and a number

of techniques have been proposed (see [5] for a survey). The objective is to identify

correct information amidst a multitude of conflicting data from multiple data sources.

The näıve method of majority voting, which considers the most frequently pro-

vided value to be true, is not e↵ective when sources report outdated claims, un-

knowingly provide wrong information or copy from erroneous sources. The earliest

approaches to counter majority voting were devised in [6, 7] that propose to identify

authoritative sources on the Web. However, in the context of integration of data from

a subset of sources, these techniques may not be employed directly as the relatively

smaller set of sources does not reflect their true trustworthiness.

Over the last decade, data fusion techniques proposed the following general prin-

ciple of conflict resolution in data fusion to truly represent the credibility of sources:

the amount of trust in a source is measured directly in terms of the correctness of

claims that it provides, and the correctness of a claims depends on the trustworthiness

of sources that invest in it. Following this general principle, most of the data fusion

techniques can be categorized as: Bayesian-based [2, 3, 8, 9], optimization-based [10],
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or probabilistic graphical models-based [11]. Other variants have been proposed that

leverage source dependencies [8, 12] and incorporate prior knowledge to improve the

performance of fusion [9, 10, 13–15]. Most of the data fusion techniques o↵er auto-

mated (unsupervised) solutions to resolve conflicting data whereas a few [12, 15, 16]

engage some level of supervision by utilizing ground truth data to identify trustwor-

thy sources. None of these works address the problem of careful selection of ground

truth data to improve and expedite conflict resolution.

2.2 Human-in-the-loop Data Integration

As a product to end-users, data management systems should work closely with

people in primarily three stages: (a) in determining the objectives for the system;

(b) in providing the necessary input to drive the system to a better state; and (c) in

evaluating the system through outputs.

Recent years have witnessed an increase in research e↵orts that involve humans

in the data management pipeline. Specifically, user feedback has been previously

employed in a number of data management problems such as schema matching [17,18],

dataspaces [19], entity resolution [20], classification [21] and data cleaning [22,23]. The

goal of most of these works is an optimized utilization of human input by asking a

minimal number of questions that would maximize an improvement in the quality of

the system. Toward this goal, concepts from decision theory and active learning have

proved useful.

Active learning [24] is based on the key idea that machine learning algorithms

can achieve greater accuracy from ground truth data provided they are supplemented

with a careful selection of ground truth labels. Active learning has been studied in

prior research on estimating parameters in Bayesian networks [25] that provides an

approximate algorithm to find the query that reduces the expected risk the most, and

is heavily dependent on the specific querying algorithm. Dealing with observed and

hidden variables in the context of data fusion, approximate solutions from [25] are
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not directly applicable. To make informed decisions on determining the sequence in

which human input is received, utility elicitation [26] details classical utility functions

to narrow down user preferences under uncertainty.

Involving users is often associated with a fixed budget; utilizing an expert in such

a scenario is costlier than employing a readily-available crowd of workers. Ongoing

research in collecting input from a crowd [27–29] is a related area of work because of

the possibly varied characteristics of users in the feedback framework. The problem

of noisy labels has been extensively studied in [30, 31] that jointly estimate user

quality and true labels of data items. Crowd workers and modeling their behavior

add an orthogonal dimension to the problem of selecting the best data items for

validation. In the presence of noisy feedback from a crowd of workers, any of the

existing crowdsourcing approaches can be used to obtain the most accurate label for

data items and plugged into our user feedback framework.

2.3 User Interaction in Conflict Resolution

Solicitation of user feedback has been studied before in the context of conflict

resolution [23,32,33] where the focus is to primarily use master data along with editing

rules and integrity constraints. The problem of determining the next data item to

validate is related to the suggestion generation task in [23] that aims at asking the

user a minimal set of attributes knowing which the true values of all attributes of an

entity could be deduced. Toward this goal, it specifies the currency of data in terms

of available temporal information and currency constraints derived from semantics of

the data. Their approach, however, does not address the qualities of data sources in

resolving data conflicts.

The problem of validating correct claims is also similar to the task of deducing

certain regions in [32] that leverages user feedback and editing rules to deduce deter-

ministic regions to further facilitate fixing errors in data. These approaches, however,

are not data-agnostic and assume domain-specific constraints. By disregarding the
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role of sources, these approaches are unable to draw conclusions about attributes of

data items other than the true values of the one in question.

In particular, [12,15,16] propose conflict resolution mechanisms in the presence of

ground truth data and [32] incorporates master data for resolving conflicts. Both of

these forms of prior knowledge could be considered a form of user input. However, the

main drawback of these approaches is that such prior knowledge is considered static

and no e↵ort is made to maximize the benefit of user input while also incorporating

minimal amount of user interaction. We realize that the benefit from incorporating

pre-meditated user input could be less than that achieved when the user is actively

involved in confirming correctness of claims.

2.4 Leveraging Data Relationships

Source relationships. Significant research has been done on source selection and

dependence and correlations among data sources [8, 12, 34–36]. In [8, 34, 35] the au-

thors assume that data sources are either original contributors or copiers that obtain

their information from the originators, and provide solutions to discover copying re-

lationships for improved data fusion. In contrast, [12] consider positive and negative

correlations among data sources — positive, when sources have similar data extraction

patterns and negative, when they provide complementary information or information

on di↵erent data types.

Relationships between data items. Data fusion systems largely consider data

items to be independent to each other. However, increasingly, it is becoming evident

that data items are often inter-related. The problem of correlations between data

items have been explored during the fusion of spatial and temporal data [37–39]. It

still remains a challenge to automatically discover the relationships among data items

— a task that becomes di�cult with the large scale of data items integrated from

di↵erent sources.
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Entity-relationships among claims. Real-world categories are often observed

to exhibit relationships that can be extracted from rich authoritative information

resources. The undeniable success of large-scale knowledge bases [40,41] and domain-

specific databases, such as structured vocabulary input [42], medical databases (e.g.,

RxNorm1) and map databases, o↵ers unforeseen opportunities to leverage entity-

relationships. Furthermore, the ongoing research on learning entity-relationships [43–

46] presents complementary solutions to and is the backbone of the problem of in-

tegrating data relationships with data fusion systems. The hierarchical structure of

relationships among object labels has been studied extensively in the past, especially

in the area of image annotation [47–49] and classification [50,51]. However, it has not

been exploited fully in the context of data fusion. Single-truth data fusion systems

(that assume each data item to have a single correct claim) have found the approach

of considering implications or similarities between claims to improve the e↵ectiveness

of fusion [3,8]; the adopted techniques, however, are limited to ad hoc similarity mea-

sures between claims such as edit distance for similarity between strings, tolerance

for proximity in numbers, Jaccard similarity index to gauge how similar two sets are,

etc. Multi-truth models [12,16], on the other hand, neither consider any associations

among the di↵erent claims of data items nor mandate the various truths about data

items to be consistent with each other.

In [52], the authors proposed that the information on partial ordering among

claims can be used to discover truth from synthetically generated data and showed

that this approach reduces the error-rate of source quality estimation. There are cer-

tain limitations of this work. First, it does not capture relations other than partial

ordering, e.g., it does not address representation of relations among claims that are

equivalent to each other or are mutually exclusive. Second, in a bid to limit over-

estimation, the approach does not take the partial order into account for evaluating

source metrics, and considers it partially in determining correct claims of data items

resulting in a low overall recall for fusion.

1https://www.nlm.nih.gov/research/umls/rxnorm/
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3 DATA FUSION MODELS

In this chapter, we describe the preliminaries for the rest of the dissertation. We

present the data model and several data fusion models used in Chapter 4 and Chap-

ter 5.

3.1 Data Model

In this section, we describe the data model of a data fusion system and formulate

the problem of ordering user feedback for e↵ective conflict resolution in data fusion.

Let S = {S1, . . . ,Sn} be a set of sources that provide claims about data items in

set O = {O1, . . . ,Om}. Sources provide specific claims for data items modeled as a

set of observations  = { 1
, . . . , 

|O|}. Observations for data item Oi are represented

by  i = { j,i,k} where

 j,i,k =

8
><

>:

1 if Sj votes for claim v
k
i of Oi

0 otherwise

Each data item oi can have a number of claims. For data itemOi, S i = {S i
1,S i

2, . . .}

denotes the ordered list of sources that provide (with slight abuse of notation) claims

 
i = { i

1, 
i
2, . . .}, where source S i

j provides claim  
i
j. The set of unique claims of Oi

is denoted by Vi = distinct( i) = {v1i , . . . , v
|Vi|

i }. The set of claims on all data items

is denoted by V = {V1, . . . ,V|O|}.

The set of sources that provide claim v 2 Vi is represented by S i(v) ✓ S, and the

set of claims that Sj provides for Oi is denoted by Vi(Sj) 2 Vi.

Example 3.1.1 Consider data item Catch-22 in the example presented in Ta-

ble 3.1. The set of all claims about it is VCatch-22 = {Joseph Heller, J. D. Salinger} and
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Table 3.1.: An example data table showing four sources providing information about
directors of six movies. Correct claims are marked with a (*).

Source Data Item Claim Correct?

Catch-22 S2 Joseph Heller X
Catch-22 S3 Joseph Heller X
Catch-22 S4 J. D. Salinger

Fahrenheit 451 S1 Michael Wol↵
Fahrenheit 451 S3 Ray Bradbury X
Lord of the Flies S2 William Golding X
Lord of the Flies S3 Arundhati Roy

Haroun and the Sea of Stories S2 Salman Rushdie X
Haroun and the Sea of Stories S4 Chris Haroun

the fact that source S2 provides claim Joseph Heller and not J. D. Salinger is represented

by setting  S2,Catch-22,Joseph Heller = 1 and  S2,Catch-22,J. D. Salinger = 0. The ordered

list of claims respectively made by sources in SCatch-22 = {S2,S3,S4} is denoted by

 
Catch-22={Joseph Heller, Joseph Heller, J. D. Salinger} where source S4 provides claim

J. D. Salinger. The set of sources for claim Joseph Heller is SCatch-22(Joseph Heller)

= {S2,S3}.

Definition 3.1.1 A database D is a tuple hO,S, ,Vi where O is the set of data

items, S is the set of sources, V = {V1, . . . , V|O|} is the set of claims, and  =

{ 1
, . . . , 

|O|} is the set of observations for all data items.

Given all components defined above, we formally introduce a data fusion system with

its input and output structures:

Definition 3.1.2 A data fusion system F is a function that takes database D as input

and outputs a set of probability assignments P denoting correctness probabilities of

claims and may or may not output source quality measures QF :

F : D ! hP ,QFi
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where 8Oi 2 O, P(vki ) = p
k
i 2 [0, 1] is the correctness of claim v

k
i , i.e., the probability

that claim v
k
i 2 Vi is correct. When F outputs QF , 8Sj 2 S, QF

j is a vector of source

metrics that indicate the quality of source Sj.

3.2 Data Fusion Model

We start this section with describing the details of data fusion: consider a set of

data sources S that provide conflicting claims on data items in O; the goal of data

fusion is to identify the correct claim of each data item Oi 2 O.

Traditional conflict resolution systems often resort tomajority voting to determine

the correct claim for data items – a claim that is provided by the maximum number

of sources is considered to be correct and rest are considered false. Under this näıve

assumption, the probability of claim v
r
i of data item Oi being true is computed as:

p
r
i =

nP
j=1

 j,i,k

|Vi|P
r=1

nP
j=1

 j,i,r

(3.1)

Table 3.2 presents the correctness probabilities of claims as obtained through voting.

For each data item, the claim with the highest correctness probability is considered

correct.

Table 3.2.: Output of Voting for the example in Table 3.1.

Data Item Correctness Probabilities

Catch-22 Joseph Heller (0.67), J. D. Salinger (0.33)
Fahrenheit 451 Ray Bradbury (0.5), Michael Wol↵ (0.5)
Lord of the Flies William Golding (0.5), Arundhati Roy (0.5)

Haroun and the Sea of Stories Salman Rushdie (0.5), Chris Haroun (0.5)

Majority voting technique disregards the role of data sources in determining the

correctness of claims. Recent years have witnessed a surge of data fusion models that



15

consider the characteristics of data sources as important in assessing the quality of

claims they provide. The key idea behind this approach is the intuition that trusted

sources often furnish trustworthy information whereas it is di�cult to completely

trust data provided by untrusted or less trusted data sources. On the basis of this

intuition, the correctness of claims in these data fusion models depends upon the

quality of sources providing those claims. In the following, we describe a few such

data fusion models:

3.2.1 Bayesian Data Fusion Model: ACCU

This model, proposed in [8] (as AccuNoDep) and [53], considers sources to be

characterized by their accuracies, i.e., how often do they publish correct information,

and use this metric to compute the correctness of claims they provide. The model, in

its basic form, assumes sources to be independent; because of its ease of understanding

and interpretation, this fusion model forms the basis for a number of other variants of

fusion [8,35,54] that consider source dependence in assessing the qualities of sources.

ACCU is a Bayesian data fusion model that has observations (the votes of sources

on claims,  ), and hidden variables (A: the accuracies of sources, and p
k
i : the cor-

rectness probabilities of claims); the objective is to infer the hidden variables given

the observations. This goal is achieved in the following two iterative steps:

1. Correctness of a claim. The model uses Bayesian analysis to compute the

correctness of a claim from the accuracies of sources that support it. The

probability of claim v
r
i of data item Oi being true is computed as:

p
r
i = p(vri =true |  .,i,.) =

Q
s2S(vri )

(|Vi|� 1)A(s)

1�A(s)

P
voi 2Vi

Q
s2S(voi )

(|Vi|� 1)A(s)

1�A(s)

(3.2)
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where  .,i,. represents the observations for data item Oi and S(vri ) is the set of

sources that vote on claim v
r
i of Oi. In this model, only one of the claims is

considered to be true and the rest are considered false.

2. Accuracy of a source. Source accuracies are updated using the current prob-

abilities of claims. The accuracy of source Sj is defined as the probability that

its claim about a data item is true, and is computed as the average probability

of its claims being true:

A(Sj) =

mP
i=1

 j,i,k=1

p
k
i

N(Sj)
(3.3)

where Sj provides information about N(Sj) data items.

Sources are initially assigned default accuracies. The model alternates between the

aforementioned two steps until it reaches a steady state (either sources accuracies or

correctness probabilities converge) or attains the threshold for number of iterations.

Note, however, that ACCU is not guaranteed to converge [34] although in practice,

it does converge for datasets typical to data fusion. At the end of convergence, for

each data item, the claim having the highest correctness probability is considered to

be correct and the rest false.

Tables 3.3 and 3.4 show the output of fusion after the model has converged for the

example in Table 3.1. The values in parenthesis in Table 3.3 show the probabilities

of claims being considered correct.

3.2.2 Probabilistic Graphical Fusion Model: Truthfinder

The input of data fusion for this model [3] is represented as a probabilistic graph-

ical model [55]. In this model, sources are characterized and assessed by their trust-

worthiness which is utilized to infer confidence in facts provided by them. Similar

to ACCU, Truthfinder has observations ( ), and hidden variables (t: trustworthiness
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Table 3.3.: Output of data fusion model ACCU for the example in Table 3.1: Cor-
rectness probabilities of claims.

Data Item Correctness Probabilities

Catch-22
Joseph Heller (1)
J. D. Salinger (0)

Fahrenheit 451
Ray Bradbury (0.98)
Michael Wol↵ (0.02)

Lord of the Flies
William Golding (0.72)
Arundhati Roy (0.28)

Haroun and the
Sea of Stories

Salman Rushdie (1)
Chris Haroun (0)

Table 3.4.: Output of data fusion model ACCU for the example in Table 3.1: Source
accuracies.

Source Accuracy

S1 0.02
S2 0.91
S3 0.76
S4 0.00
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of sources, and s: confidence of claims); the following steps outline how to infer the

trustworthiness of data sources and confidence of claims:

1. Confidence of a claim. The model computes the confidence of a claim based

on the trustworthiness of sources that provide it. The confidence of claim v
r
i of

data item Oi is calculated as:

s(vri ) = 1�
Y

 j,i,r=1

(1� t(Sj)) (3.4)

2. Trustworthiness of a source is defined as the expected confidence of claims

it provides and is calculated as the average confidence of its claims:

t(Sj) =

mP
i=1

 j,i,k=1

s(vki )

N(Sj)
(3.5)

where N(Sj) is the number of claims provided by Sj.

To avoid dealing with underflow caused by multiplication of unusually small trust-

worthiness values, Truthfinder uses logarithms that facilitates easy computation of

trustworthiness and confidence values (details can be found in [3]). Truthfinder it-

eratively computes the trustworthiness of data sources (begins with default uniform

values) and confidence of claims, and stops when the variables attain a steady state.

Tables 3.5 and 3.6 show the output after Truthfinder finishes computation for the

example in Table 3.1. The values in parenthesis in Table 3.5 show the confidence of

claims.

3.2.3 Multi-truth Data Fusion Model: PrecRec

This multi-truth data fusion model [12] characterizes sources by their recall, pre-

cision and false positive rate calculated over training data (assumes access to ground
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Table 3.5.: Output of data fusion model Truthfinder for the example in Table 3.1:
Confidence of claims.

Data Item Confidence of Claims

Catch-22
Joseph Heller (0.65)
J. D. Salinger (0.57)

Fahrenheit 451
Ray Bradbury (0.58)
Michael Wol↵ (0.57)

Lord of the Flies
William Golding (0.58)
Arundhati Roy (0.58)

Haroun and the
Sea of Stories

Salman Rushdie (0.58)
Chris Haroun (0.57)

Table 3.6.: Output of data fusion model Truthfinder for the example in Table 3.1:
Trustworthiness of sources.

Source Trustworthiness

S1 0.57
S2 0.60
S3 0.60
S4 0.57
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truth for a subset of data items) and considers multiple claims for a data item to be

correct. The source quality measures are defined over the entire training data as:

1. Recall of a data source, r(Sj), is defined as the fraction of all correct claims

that the source provides. Formally,

r(Sj) =

mP
i=1

 j,i,k=1

���{vki | vki = true}
���

mP
i=1

 .,i,k=1

���{vki | vki = true}
���

(3.6)

Precision of a data source, ⇢(Sj), is calculated as the fraction of claims it

provides that are correct. Formally,

⇢(Sj) =

mP
i=1

 j,i,k=1

���{vki | vki = true}
���

mP
i=1

 j,i,k=1

���{vki }
���

(3.7)

False positive rate of data source, q(Sj), is derived from its recall and precision

using Bayes rule [12] as:

q(Sj) =
↵

1� ↵
· 1� ⇢(Sj)

⇢(Sj)
· r(Sj) (3.8)

where ↵ is the a priori probability that of a claim being correct.

2. The correctness probability of a claim is then computed in terms of quality

measures of both sources that provide the claim and those that do not provide

the claim as:

P(vki ) =
1

1 + 1�↵
↵ · 1

µ

(3.9)

where

µ =
Y

 j,i,k=1

r(Sj)

q(Sj)

Y

 j,i,k 6=1

✓
1� r(Sj)

1� q(Sj)

◆
(3.10)
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Table 3.7.: Output of data fusion model PrecRec for the example in Table 3.1: Cor-
rectness probabilities of claims.

Data Item Correctness Probability of Claims

Catch-22 Joseph Heller (1), J. D. Salinger (0)
Fahrenheit 451 Ray Bradbury (1), Michael Wol↵ (0)
Lord of the Flies William Golding (1), Arundhati Roy (0.33)
Haroun and the
Sea of Stories

Salman Rushdie (1), Chris Haroun (0)

Table 3.8.: Output of data fusion model PrecRec for the example in Table 3.1: Quality
measures of sources.

Source Precision Recall

S1 0 0
S2 1 0.75
S3 0.67 0.5
S4 0 0

Tables 3.7 and 3.8 show the output when PrecRec is run on the example in Ta-

ble 3.1. The values in parenthesis in Table 3.7 show the correctness probabilities

of claims. Claims having correctness probabilities higher than a certain threshold

(usually, 0.5) are considered correct.
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4 USER FEEDBACK DURING DATA FUSION

In this chapter, we propose a novel pay-as-you-go framework for supervised data

fusion to judiciously leverage user feedback and rapidly improve the performance of

fusion. We describe the various components of our framework that aims at rapidly

resolving conflicts during data fusion with minimal user involvement.

This chapter is organized as follows: in Section 4.1, we present a motivating

example for the problem of utilizing user feedback in data fusion, describe the solution

overview and outline the summary of our contributions. We formally present our

problem in Section 4.2 and describe the data fusion model in Section 4.3. Section 4.4,

we discuss two broad ranking mechanisms to present questions to the user for feedback

— our algorithms in Section 4.4.1 assess data items individually while the framework

in Section 4.4.2 ranks data items by their ability to boost the performance of fusion.

We empirically evaluate our algorithms on two real-world datasets with di↵erent

characteristics in Section 4.5, and finally summarize the chapter in Section 4.6.

4.1 Introduction

Recently, a number of data fusion systems have been proposed to deal with con-

flicting data sources, and discriminate true and false claims of data items (see [5]

for a survey). Most of the existing fusion techniques automatically identify correct

claims for data items. Although quite accurate, fusion systems are not error-free;

incorrect predictions quickly trickle down to other data items as faulty conclusions

about correctness of claims. Particularly for crucial data items, it is essential to

distinguish correct claims from incorrect ones. To prevent the spread of inaccurate

conclusions and to ensure that the fusion system correctly determines true claims

for most data items, feedback should be integrated in the form of validation from
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Table 4.1.: Motivating example showing four sources providing information about
directors of six movies. Correct claims are marked with a (*).

ID Data Item S1 S2 S3 S4

O1 Zootopia Howard* Spencer Spencer
O2 Kung Fu Panda Stevenson* Nelson
O3 Inside Out leFauve Docter*
O4 Finding Dory Stanton*
O5 Minions Co�n* Renaud
O6 Rio Jones Saldanha*

an expert. Automated fusion techniques with trusted validation of true claims are

expected to steer the system toward a state of higher e�cacy.

4.1.1 Motivation and Challenges

Consider an example of websites (sources) providing information on directors of

certain animation movies as shown in Table 4.1 (correct claims of data items are

marked with a *). Data fusion systems take the table of conflicting claims as input,

and output the correctness of each claim (and, in some cases, the accuracy of each

source, i.e., the probability that a claim provided by the source is correct).

Source S1 provides Howard as the director for the movie Zootopia whereas sources

S3 and S4 claim it to be Spencer. A data fusion system that predicts Spencer to

be correct can benefit from the validation that Howard is instead true. With this

knowledge, the fusion system can reconsider the claims provided by sources S1, S3

and S4 and improve its output on other data items.

Validation of claims per se is an expensive task; to guarantee e↵ective conflict

resolution, it assumes access to highly accurate feedback (e.g., domain experts). To

judiciously utilize the expert, claims should be presented for validation in an order

that is most beneficial to the performance of fusion. Assuming we can validate any
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data item (by asking an expert or using crowdsourcing), and know which of its claims

is correct, which item should we select for validation?

The task of identifying the best data item for validation is challenging because

we have to deal with a number of issues. First, we do not possess ground truth and,

therefore, need to develop heuristics to select the best data item. Second, we need to

quantify the definition of ‘best’ i.e., what is the basis for deciding whether or not one

data item is more suitable for validation than another? Third, data fusion typically

deals with a large number of claims (hundreds of thousands), thus limiting the ability

to ask questions on a very small fraction of all claims. Fourth, since each data item

may potentially influence any other item, the exhaustive search of estimating the

impact of each item on all others by re-running fusion, is prohibitively expensive.

For example, to evaluate data item O1 for validation, we need to assess its impact

on all the (2 + 2 + 2 + 1 + 2 + 2) = 11 distinct claims of six data items. Similarly

checking all data items to select the first item for validation would require 6⇤11 = 66

computations. Scaling up this costly procedure to millions of claims is infeasible.

To this end, there are two major observations. First, data items have di↵erent

levels of uncertainty because of the agreement/disagreement of sources on claims. One

may expect that validating "Minions" would be more advantageous than validating

"Zootopia" because S1 and S2 disagree on "Minions" while two of the three sources

that vote for "Zootopia" agree on a common value. This is because we expect to

learn more from the validation of data items with disagreement. Second, although

a data item may have conflict over its values, validating it may not be beneficial if

it does not influence enough items. For instance, validating "Finding Dory" would

have an e↵ect only on "Zootopia" whereas validating "Zootopia" would impact all

other items.
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D Data Fusion
Model

Ranking Algorithms
Correctness of Claims

Next data item
to validate

User Feedback to Data Fusion

Figure 4.1.: The proposed user feedback framework.

4.1.2 Solution Overview

Given data and the output of fusion, we focus on the problem of determining

the best data item for the user to validate (Figure 4.1) without using ground truth

information.

To generate an ordering in which data items should be validated, we propose

two item-level ranking strategies that evaluate data items individually based on their

local characteristics. We discuss limitations of the item-level ranking approaches, and

propose a novel decision-theoretic framework that assesses data items holistically. Our

framework uses the concept of value of perfect information (VPI) [56] that is based

on a utility function to measure the desirability of the current state of a system for

its users, and selects a claim validating which maximizes gain in the utility function.

We show that this procedure leads to a prohibitively expensive computational cost

because we need to fuse data each time we wish to compute the utility gain of a data

item. To scale up our framework to large-scale datasets, we propose to analytically

estimate the impact of a validation on other unvalidated data items, and select a

claim that has the maximum utility gain over the estimates.
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4.1.3 Summary of Contributions

We address the problem of utilizing user feedback e↵ectively to improve the per-

formance of existing fusion techniques. Our main contributions are:

• We formalize the problem of ordering user feedback for e↵ective conflict resolu-

tion in data fusion based on probabilistic graphical models (Section 4.2).

• We propose strategies to generate an e↵ective ordering in which claims should

be validated. Our item-level ranking strategies consider data items individu-

ally (Section 4.4.1) while our novel decision-theoretic framework, based on the

concept of value of perfect information, evaluates data items holistically (Sec-

tion 4.4.2).

• To scale up the decision-theoretic framework, we derive approximation formulae

that quantify the impact of a validation by analytically estimating the change

it e↵ects in other claims. (Section 4.4.2)

• We conduct an extensive experimental evaluation on real-world datasets where

we demonstrate the e�cacy of the proposed methods in improving conflict reso-

lution, and present trade-o↵s between user involvement and e↵ectiveness of the

methods. (Section 4.5)

4.2 Problem Formulation

In this section, we formulate the problem of ordering user feedback for e↵ective

conflict resolution in data fusion.

Feedback Solicitation. To improve the e↵ectiveness of a data fusion system, we

solicit feedback in the form of validation of a data item, e.g., we ask the user to

provide the true director of Zootopia.

Action. The validation of a data item Oi 2 O is called an action and is denoted by

✓i. The space of possible actions ⇥, is determined by the set of data items that have

not yet been validated.
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Table 4.2.: Output of data fusion for the example in Table 4.1. Value in parenthesis
shows the probability that a claim is considered correct.

ID Probabilities of Claims

O1 Howard (0), Spencer (1)
O2 Stevenson (0.015), Nelson (0.985)
O3 Docter (0.999), leFauve (0.001)
O4 Stanton (1)
O5 Co�n (0.921), Renaud (0.079)
O6 Saldanha (0.985), Jones (0.015)

Problem Statement. Given a data fusion system F and its output hP ,QFi, we

solve the problem of determining the next action ✓i from the set of possible actions

⇥ to solicit feedback from a user.

4.3 Data Fusion Model

In this chapter, we deploy the user feedback framework atop the ACCU data fusion

model as described in Section 3.2. Table 4.2 shows the output of fusion after ACCU

has converged for the example in Table 4.1.

As shown in Figure 4.1, we treat the data fusion model as a black-box and use

the output of fusion to determine the next action which is, thus, independent of the

convergence of the fusion model. In the next section, we outline ranking algorithms

that leverage only the data and the output of fusion to determine the next action.

4.4 Solution

In the present work, we propose two broad ranking approaches to generate the

order in which data items should be validated. The item-level ranking strategies pre-

sented in Section 4.4.1 consider data items individually, while the decision-theoretic

feedback framework of Section 4.4.2 evaluates data items based on their ability to

impact the performance of fusion on other unvalidated data items.
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4.4.1 Item-level Ranking Strategies

This section presents two techniques that assess the local characteristics of data

items to determine the next action. The techniques presented are built upon the

principle of uncertainty inherent in a data item. Intuitively, an item with greater

uncertainty o↵ers more information to the system.

We propose using entropy [57] to quantify the average information content in a

data item. Entropy is a way to measure the level of uncertainty in probabilistic

objects. In the context of data fusion, data item Oi is a probabilistic object whose

true claim ranges over all of its possible claims vki 2 Vi. The entropy of Oi is defined

as:

Hi = �
X

vki 2Vi

p
k
i log p

k
i (4.1)

where p
k
i is the probability that claim v

k
i is true.

A data item that has a low entropy has a higher degree of certainty, i.e., some

claim has a high probability of being true, compared to a data item having claims

that are almost equally likely. On the contrary, a low entropy means we can be more

certain about true/false labels that should be attached to the claims. However, it also

encapsulates the case when a false claim is predicted true with a high probability.

Using entropy as the uncertainty measure, the next action is determined as vali-

dating the data item that has the highest entropy, i.e.,

ai = argmax
✓i2⇥

Hi (4.2)

We now present our item-level ranking algorithms that elaborate on obtaining p
k
i

to use in Equation (4.1). In Section 4.4.1, we present an algorithm based on the

disagreement of sources over claims of a data item whereas Section 4.4.1 presents an

algorithm that ranks data items based on the output of data fusion.
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Disagreement-based algorithm

This section presents Query-by-Committe (QBC), a widely used technique in active

learning [24] that is based on the disagreement of sources over claims of a data item.

QBC is built upon the principle of majority voting where the true claim of a data item

is the one supported by most of the sources. The intuition behind QBC is that an item

is less likely to be predicted incorrectly by fusion if most of the sources agree upon it

while the true claim of an item disputed by many sources may be questionable. In

such cases, it might be more beneficial to validate the latter data item.

QBC uses the votes of sources over claims to compute the probability of correctness

of a claim v
k
i 2 Vi as the fraction of sources (voting for Oi) that support vki :

p
k
i =

nP
j=1

 j,i,k

|Vi|P
r=1

nP
j=1

 j,i,r

(4.3)

This definition of pik is used in Equation (4.1) to evaluate the uncertainty intrinsic

to a data item and is termed as vote entropy [24]. The data item queried by QBC is

the one most disagreed upon by sources that vote for it.

Example 4.4.1 In Table 4.1, the vote entropy of O2 is computed as H2 = �1
2 log

1
2�

1
2 log

1
2 = 0.693, which is greater than the vote entropy of O1 (H1 = �1

3 log
1
3�

2
3 log

2
3 =

0.637). QBC would validate O2 before it validates O1.

QBC has a low computational cost because it does not need to recompute entropies

after a validation. However, one major drawbacks of QBC is that it does not take into

account the dependencies between data items through sources.

Uncertainty-based algorithm

The first and foremost limitation of QBC is that the choice of the next action

is determined solely by distribution of source votes on claims of a data item. It is
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agnostic to the output of fusion, i.e., it does not consider (i) accuracy of sources, and

(ii) probabilities of correctness of claims. For the example in Table 4.1, QBC may select

O3 for validation although its true claim has already been identified (Table 4.2).

To overcome this weakness, we present an uncertainty-based technique that selects

an action the fusion system is less certain about. Uncertainty sampling, denoted by

US, uses probabilities of correctness of claims as output by data fusion to compute

the entropy in Equation (4.1). Intuitively, data items that the fusion system is least

certain about are more suitable for validation, since the more confident predictions

are probably correct.

Example 4.4.2 The entropy of O5 in Table 4.1 is computed using the probabilities

in Table 4.2, is H5 = �(0.079) log(0.079)� (0.921) log(0.921) = 0.276. H5 is greater

than the entropy of all other data items and, therefore, US considers O5 the most

suitable for validation.

Beacuse of its ease of interpretation and implementation, uncertainty sampling is

one of the most commonly used strategies in active learning. However, unlike QBC,

US considers the output of fusion, and therefore, takes source accuracies into account.

The downside is that we need to run the fusion system each time we validate an

action.

One of the major drawbacks of the item-level ranking approaches is that these

methods aim to resolve conflicts at the site of a single data item without any regard

to the conflicts existing in other data items. In the following section, we present

a framework that assesses data items with the objective of resolving conflicts in all

unvalidated data items.

4.4.2 Decision-Theoretic Framework

The techniques presented in Section 4.4.1, although computationally inexpensive,

determine actions with the local view of resolving individual conflicts. An additional

limitation is that none of the methods considers possible interdependence among
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data items and, therefore, o↵ers no guarantee on the improvement of fusion over

other unvalidated data items.

Our objective is to globally identify the best action that would benefit fusion

on all unvalidated data items. To this end, we design a decision-theoretic feedback

solicitation framework based on the value of perfect information. The framework

defines a utility function to measure the usefulness of the current state of fusion,

and identifies an action that is most likely to improve the utility of data fusion for

all unvalidated data items. To the best of our knowledge, none of the earlier works

incorporates the value of information for the problem of data fusion.

Background Concepts

We introduce the basic concepts of our framework such as utility and the value of

perfect information. We show that in the absence of ground truth, we have to rely

on an alternative utility function based on the idea of uncertainty reduction (referred

to as the entropy utility function).

Utility function. We define the utility function as a function that measures the

usefulness of a data fusion system. The utility of a system is higher if it is able to

predict a greater number of true claims correctly. Let T : vki ! {true, false} be a

truth function that assigns true to a correct claim and false to an incorrect claim.

Definition 4.4.1 Given truth function T , database D and fusion system F : D !

hP ,QFi, the utility function U(D,F , T ) is defined as:

U(D,F , T ) =
1

|V|

0

@
X

Vi2V

X

vki 2Vi

p
k
i �(T (vki ))

| Vi |

1

A

where p
k
i 2 P and �(v) =

8
><

>:

1 if v = true

0 otherwise
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The utility function can be interpreted as measuring the average probability of

true claims based on the output of fusion system F . The closer the utility function

is to 1, the higher is the e↵ectiveness of F .

Value of Perfect Information. We measure the usefulness of an action ✓i with

respect to our utility function by the value of perfect information (VPI). VPI has

been used widely in areas such as economics [58], healthcare [59], data cleaning [17,

19,22,29, 60] and classification [21].

Definition 4.4.2 The value of perfect information (VPI) of action ✓i is defined as:

V PI(✓i) =
X

vki 2Vi

U(D,F , T | T (vki )=true)pki � U(D,F , T )

The VPI of action ✓i is the expected gain in the utility function earned by validating

data item Oi. To compute U(D,F , T | T (vki ) = true), the information that v
k
i =

true is input to the data fusion system as prior knowledge by setting p
k
i = 1 and

p
f
i = 0 8 v

f
i 2 Vi \ {vki }. The fusion model uses this additional information in its

computation of correctness of claims and accuracies of sources.

A set of all possible actions, denoted by ⇥, consists of an action ✓i for each

unvalidated data item Oi 2 O. Our goal is to identify the action that has the highest

VPI, i.e.,

✓i = argmax
✓i2⇥

V PI(✓i) (4.4)

Maximum Expected Utility

Real-world applications prevent us from using the utility function from Defini-

tion 4.4.1 because we do not possess the truth function T , i.e., ground truth is not

available. To this end, we propose using an entropy utility function to identify actions

that reduce the uncertainty associated with the output of fusion. This idea, known

as uncertainty reduction, has been extensively used in the past [17, 29, 61–63].
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Definition 4.4.3 Given database D and data fusion system F : D ! hP ,QFi, the

entropy utility function is defined as the sum of entropies across all data items in D,

i.e.,

EU(D,F) = �
X

Oi2O

Hi = �
X

Oi2O

X

vki 2Vi

p
k
i log p

k
i

where p
k
i 2 P is the probability that claim v

k
i 2 Vi is true.

The entropy utility function measures the average uncertainty in the probabilities

of claims; the closer the entropy utility is to 0, the higher is the e↵ectiveness of fusion.

We present Maximum Expected Utility (denoted by MEU), a framework that inte-

grates the entropy utility function with the concept of VPI. MEU uses EU(D,F) as

the utility function in Definition 4.4.2 instead of U(D,F , T ) to compute the expected

entropy utility gain of action ✓i as:

�EUi = EU(D,F)� EU(D,F | vki = true)pki (4.5)

MEU considers the one-step lookahead state of fusion after a potential action and

identifies one that has the highest expected entropy utility gain, i.e.,

✓i = argmax
✓i2⇥

�EUi (4.6)

This kind of validation strategy is myopic in nature because we look only one step

ahead each time we make a decision. It is possible that some action may not lead to

the highest VPI at the current step but validating it can result in a higher VPI in sub-

sequent validations. Sequential validations are challenging and often computationally

expensive [19]; the present work focuses only on myopic strategies.

Example 4.4.3 For the example in Table 4.1, we use Table 4.2 to compute EU(D,F)

= 0.437. Considering O1 for validation, Table 4.3 shows the output of fusion when

Howard is true and Table 4.4 shows the output when Spencer is true. (For ease of
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Algorithm 1: MEU Algorithm

1: for each unvalidated data item Oi do
2: for each claim v

k
i 2 Vi do

3: Compute EU(D,F | vki = true)
4: end for
5: Compute �EUi as in Equation (4.5)
6: end for
7: Select the action with the maximum �EUi

display, we represent the columns to be claims as they appear in Table 4.2, e.g., for

O1, p0 represents the probability of claim Howard and p
1 the probability of Spencer.)

Table 4.3.: Probabilities when Howard

is correct.

ID p
0

p
1

O1 1 0
O2 0.082 0.918
O3 0.045 0.955
O4 1
O5 0.004 0.996
O6 0.918 0.082

Table 4.4.: Probabilities when
Spencer is correct.

ID p
0

p
1

O1 0 1
O2 0.004 0.996
O3 1 0
O4 1
O5 0.944 0.056
O6 0.996 0.004

Using Tables 4.3 and 4.4, MEU computes EU(D,F|Howard = true) = 0.781,

and EU(D,F|Spencer = true) = 0.262. The expected utility of O1 = 0(0.781) +

1(0.262) = 0.262.

Table 4.5.: Expected utility of data items in Table 4.1.

ID O1 O2 O3 O4 O5 O6

EU* 0.262 0.231 0.258 0.262 0.052 0.231

Table 4.5 shows the expected utility (EU*) of all data items. MEU decides to validate

O5 because its utility gain ((EU(D,F)�EU
⇤

5 ) = 0.385) is the highest among all items.
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In the absence of ground truth, maximum expected utility (MEU) [56] is consid-

ered to be the best alternative to ground truth utility. The main drawback of MEU is

its lack of e�ciency. To determine the next action, MEU re-runs fusion F on database

D for each claim of every data item o 2 O. The time complexity of MEU is O(mtF)

where m is the number of unvalidated data items in D,  is the average number of

unique claims per data item and tF is the time needed to run F on one instance of

data. A typical run of fusion iterates over all data items and all sources until con-

vergence. This contributes to an O(mI(m+ n)) complexity where I is the average

number of iterations to convergence and n is the number of sources. With data items

far outnumbering sources, the result is a complexity of O(m2
I). Concluding, MEU

can tackle datasets a few hundred data items in size in a reasonable amount of time.

Our objective is to be able to process datasets with at least a few thousands of data

items.

Approximate-MEU

MEU describes a general decision-theoretic framework for the problem of ordering

conflicts for user feedback in data fusion. However, the extreme computational cost

of MEU makes it infeasible for large-scale datasets.

To this end, we present Approx-MEU, a method that leverages the structure of

interactions between data items and sources to estimate the impact of a data item on

other unvalidated data items. In the next step, it calculates the expected utility of

each data item and determines the next action as the one with the maximum expected

utility gain.

This approach is built on the intuition that an action would alter the proba-

bilities of claims of the validated data item and its neighbors. The intuition is

based on principles inherent in Bayesian network inference methods such as be-

lief propagation [55], variational message passing [64] and incremental expectation-

maximization [65]. These methods decompose the computation into local data item
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calculations and pass them to other items via messages. In our problem, a validation

is considered a local update of the probabilities of claims of a data item.

Consider data items Oi and Oj. The goal of Approx-MEU is to estimate the

probabilities of claims of Oj after Oi has been validated. This computation involves

the following two steps: (i) measuring the change in probabilities of claims of the

validated item Oi, and (ii) estimating the change in probabilities of claims of Oj as a

function of the change in probabilities of Oi. We estimate the probabilities of claims

of unvalidated data items by the method of linear approximation by di↵erentials in

the following steps.

Change in probabilities of claims of oi

We assume an arbitrary claim v
t
i 2 Vi to be true. Upon validating Oi, the

change in probability of v
t
i is: �p

t
i = (1 � p

t
i). This validation ensures that the

remaining claims in Vi are false. The change in probability of vfi 2 Vi \ {vti} is :

�p
f
i = (0� p

f
i ) = �p

f
i .

Propagation of changes from Oi to Oj

Data items Oi and Oj could be connected either through a source that votes for

both of them or through a path consisting of alternating sources and items. As seen

in the graph in Figure 4.2, O1 and O2 are connected through source S3 whereas O2

and O4 are connected via the hO2,S3,O1,S4,O4i path. We present an analysis of

both the cases:

1. Oi and Oj have at least one common source. We first examine how the

probabilities of claims in Vi impacts the accuracies of sources that vote for both

Oi and Oj (because change is propagated to oj through these sources).

Updates in source accuracies. The intuition behind the e↵ect of changes

in Oi to sources that vote on it is straightforward: we reward sources that
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support the correct claim v
t
i 2 Vi by trusting it more on information it provides

on other data items. Similarly, our model penalizes sources that vote on some

other claim v
f
i by discounting its information on other data items as well. From

Equation (3.3), the change in accuracy A(s) of a source s is computed as:

�A(s) =

8
><

>:

�p
t
i/N(s) if s votes for vti

�p
f
i /N(s) if s votes for vfi 2 Vi \ {vti}

(4.7)

where N(s) is the number of data items for which s votes.

Propagation of updates in sources to Oj. Our next task is to measure

further propagation of changes from the sources to Oj. We compute the change

in probability of claim v
r
j 2 Vj attributable to the change in probabilities of

claims of Oi by the method of approximation by di↵erentials. This part of the

analysis involves a short sequence of basic calculus over the formulae described

in Section 4.3:

We rewrite Equation (3.2) as:

1

prj

=
X

v2Vj

Q
s2S(v)

(|Vj|� 1)A(s)

1�A(s)

Q
s2S(vrj )

(|Vj|� 1)A(s)

1�A(s)

(4.8)

and represent each summation term as a function f :

f(vrj , v) =

Q
s2S(v)

(|Vj|� 1)A(s)

1�A(s)

Q
s2S(vrj )

(|Vj|� 1)A(s)

1�A(s)

(4.9)
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Equation (4.8), therefore, simplifies to:

1

prj

=
X

v2Vj

f(vrj , v) (4.10)

To compute the change in p
r
j , we estimate the approximate change in each

f(vrj , v) through a series of steps: take the logarithm of f(vrj , v) and obtain the

derivative with respect to A(s), thus presenting �f(vrj , v) as:

�f(vrj , v)

f(vrj , v)
=
X

s2S(v)

�A(s)

A(s)(1�A(s))
�
X

s2S(vrj )

�A(s)

A(s)(1�A(s))
(4.11)

For each of the sources s that vote for Oj, the term �A(s) in Equation (4.11)

takes a value as noted in Equation (4.7) depending on whether: (i) s supports vti ,

(ii) s supports a claim other than v
t
i , or (iii) s does not provide any information

on oi. Clearly, if s belongs to the third category, it will not be a↵ected by the

validation of oi.

We compute the change in probability of claim v
r
j 2 Vj attributable to the

change in probabilities of claims of oi by taking the derivative of Equation (4.10):

�p
r
j = �(prj)

2
X

v2Vj

�f(vrj , v) (4.12)

The change in probability of claim v
r
j 2 Vj because of the validation of data

item oi can, therefore, be expressed as:

�p
r
j = �(prj)

2

X

v2Vj

0

BBB@

Q
s2S(v)

(|Vj|� 1)A(s)

1�A(s)

Q
s2S(vrj )

(|Vj|� 1)A(s)

1�A(s)

1

CCCA
.

0

@
X

s2S(v)

�A(s)

A(s)(1�A(s))
�
X

s2S(vrj )

�A(s)

A(s)(1�A(s))

1

A (4.13)
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O4 O1

O2 O3

O5O6

Figure 4.2.: Graph of data items in Table 4.1: An edge implies there is at least one
source that provides information for the connecting data items.

With �p
r
j , the approximate change in probability of claim v

r
j , the updated

probability of claim v
r
j is computed as:

(prj)
0 = p

r
j +�p

r
j (4.14)

2. Oi and Oj have no source in common. We know that any change in Oi

reaches data items connected to it via at least one source, i.e., through data

items that are one-hop away from Oi. The changes in these data items then

reach data items one-hop away from them, and so on.

Theorem 4.4.1 The change in probabilities, �p
r
j , of claim v

r
j 2 Vj attributable

to the change in probabilities, �p
k
i , of claim v

k
i 2 Vi is inversely proportional to

the minimum number of data items a source votes for, raised to the power of d,

the number of hops oj is away from oi.

�p
r
j /

✓
1

Nd

◆
�p

k
i

Proof. Consider data items Oi and Oj that are more than one hop away from

each other, i.e., they are connected via an alternating path of sources and other
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data items. In this section, we compute through a sequence of steps, the change

in probabilities of Oj attributed to the validation of Oi.

First, the change in probabilities of Oi are propagated to sources that provide

claims about it. This changes the accuracies of sources: by boosting the accu-

racy of those that provide a true claim and decreasing the accuracy of those

that provide an incorrect claim. From Equation (4.7), if source s provides claim

v
l
i about data item Oi, then the accuracy of the source changes as:

�A(s) =
�p

l
i

N(s)

Change in probabilities of Oj. We represent Equation (3.2) for data item Oj as

p
r
j = q/t to obtain:

p
r
jt = q =

Y

s2S(vrj )

(|Vj � 1|)A(s)

1�A(s)
(4.15)

We apply the logarithm function to both sides of Equation (4.15) to simplify

the representation for further computation as:

log q =
X

s2S(vrj )

log
(|Vj � 1|)A(s)

1�A(s)
(4.16)

Next, to compute the change in quantity q, we obtain the first derivative of the

expressions in Equation (4.16) as:

dq

q
=

X

s2S(vrj )

d

✓
log

(|Vj � 1|)A(s)

1�A(s)

◆
=

X

s2S(vrj )

dA(s)

A(s)(1�A(s))

and express dq in a cleaner form as:

dq = q

0

@
X

s2S(vrj )

dA(s)

A(s)(1�A(s))

1

A (4.17)
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We express the change in probabilities of Oj by computing the first derivative

of Equation (4.15):

p
r
j(dt) + (dprj)t = dq (4.18)

where t can be expressed as a sum of terms, tk, similar to q for each v
k
j 2 Vj.

Using Equation (4.17), Equation (4.18) can thus be rewritten as:

p
r
j

0

@
X

vkj 2Vj

tk

X

s2S(vkj )

dA(s)

A(s)(1�A(s))

1

A+(dprj)t = q

0

@
X

s2S(vrj )

dA(s)

A(s)(1�A(s))

1

A

We now rearrange the terms appropriately and replace q/t by p
r
j , to express dprj

as:

dp
r
j = p

r
j

0

@
X

s2S(vrj )

dA(s)

A(s)(1�A(s))

1

A � p
r
j

0

@
X

vkj 2Vj

tk

t

X

s2S(vkj )

dA(s)

A(s)(1�A(s))

1

A

(4.19)

We are interested in analyzing the upper bound on dpj to get an estimate of

the maximum change that Oi would e↵ect upon Oj. We present a step-by-step

conclusion of the same. It follows from Equation (4.19) that:

|dprj |  p
r
j

������

X

s2S(vrj )

dA(s)

A(s)(1�A(s))

������

 p
r
j

X

s2S(vrj )

����
dA(s)

A(s)(1�A(s))

����

 p
r
j |S(vrj )|

����
dA(s)
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where N 0  N(s) is the least number of data items any source votes for and A0

is the accuracy of a source that yields the minimum for function A(s)(1�A(s)).

Real datasets are often faced with the situation of few sources providing infor-

mation about far too many data items. As a result, N 0 is usually more than half

the number of items in the dataset. This, coupled with pj, dp and A0(1�A0),

contributes to the change in probabilities of a data item one-hop away being

much less than the change in the probabilities of the validated data item.

For a data item, Ok, two hops away from the validated node, following similar

analysis, if Ok is reachable from Oi through Oj, we reach the conclusion that:

|dplk| 
✓
p
l
k|S(vlk)|

����
dp

r
j

N 0A0(1�A0)

����
max

◆

 dp
t
i

N 02

 �����
p
l
kp

r
j |S(vlk)||S(vrj )|
(A0(1�A0))2

�����
max

!

We observe an exponential decay of the changes in probability distributions as

we move away from the validated node. More specifically, the changes in prob-

ability distributions in the first hop are significantly higher than those from the

second hop and so on. This is attributed to the sole reason that a typical source

provides information about a large number of data items in the dataset. 2

Real-world datasets typically consist of few sources providing claims about a

large number of data items, and most of the data items are connected to each

other. Through Theorem 4.4.1, we observe an exponential decay in the change

in probabilities of claims as we move away from the validated data item.

Deciding the next action. Using Equation (4.14), Approx-MEU estimates first-

order approximations of probabilities of claims of data items within one hop of Oi
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Algorithm 2: Approx-MEU Algorithm

1: for each unvalidated data item Oi do
2: for each claim v

k
i 2 Vi do

3: Assume v
k
i is true

4: for each unvalidated data item Oj 6= Oi do
5: for each claim v 2 Vj do
6: Estimate updated probabilities of v
7: end for
8: end for
9: Compute entropy utility of updated probabilities
10: end for
11: Compute �EUi as in Equation (4.21)
12: end for
13: Select next action according to Equation (4.6)

attributable to validating claim v
k
i 2 Vi. Entropy of a data item is then computed

over the estimated probabilities of its claims, i.e.,

Hi = �
X

vki 2Vi

(pki )
0 log (pki )

0 (4.20)

The expected utility gain of action ✓i is expressed as:

�EUi = EU(D,F)�
X

vki 2Vi

p
k
i

X

Oj2O

Hj (4.21)

and the next action is determined as in Equation (4.6).

Example 4.4.4 Consider O3 for validation in Table 4.1. Table 4.6 shows the esti-

mated probabilities of claims obtained using Equation (4.14) when Docter is true and

Table 4.7 shows the estimated probabilities when leFauve is correct.

The expected utility of O3 = 0.999(0.401) + 0.001(0) = 0.401.

Table 4.8 shows the expected utility (EU*) of all data items using the approximate

probabilities of claims. Approx-MEU validates O2 because it has the highest expected

utility gain.
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Table 4.6.: Probabilities when Docter

is correct.

ID p
0

p
1

O1 0 1
O2 0.019 0.981
O3 1 0
O4 1
O5 0.931 0.069
O6 0.99 0.01

Table 4.7.: Probabilities when
leFauve is correct.

ID p
0

p
1

O1 0 1
O2 1 0
O3 0 1
O4 1
O5 1 0
O6 1 0

Table 4.8.: Expected utility of data items in Table 4.1.

ID O1 O2 O3 O4 O5 O6

EU* 0.437 0.184 0.401 0.437 0.235 0.313

Complexity. For each unvalidated data item, Approx-MEU assumes each of the claims

to be true (one at a time) and estimates the first-order approximate probabilities of

data items one-hop away from it. By eliminating the bottleneck iterative computation

in MEU, Approx-MEU has a complexity of O(md) wherem is the number of unvalidated

data items, d is the average number of data items connected to a data item and k is

the number of claims per item. In the worst case, d = m, when every data item is

directly connected to every other data item through a source.

4.4.3 Further Optimizations

We now describe further optimizations to e↵ectively scale up our ranking strate-

gies. We briefly elaborate on bounding the number of data items to consider for

validation and the e↵ect of batch size on the performance of fusion.

1. Shrinking the search space. In datasets where all data items are connected

to each other through one ore more sources, the complexity of Approx-MEU

blows up to O(m2). To e�ciently scale up the approximation formulae for
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such dense data, we propose a hybrid approach that takes the best insights

from QBC, US and MEU:

(a) Data items with high vote entropy (QBC) are the most disputed ones and,

therefore, suitable for validation;

(b) Data items with low uncertainty over output of fusion are less suited to

validation (similar to US);

(c) Among the high-entropy items, our goal (as in MEU) is to validate one with

a greater expected utility gain.

We denote by Approx-MEUk, the method that ranks unvalidated data items

by their vote entropies and considers the top k% data items for the impact

computation step. By tuning the value of k, we improve the complexity of

Approx-MEU to O(k2).

2. Batch of Actions. The present work deals with one action at a time. However,

if we have a budget of, say, twenty actions in total, one may argue that the most

e↵ective method should identify the set of best twenty actions that would result

in the maximum expected utility. However, the task of finding an optimal set

of twenty actions is not e�cient: it is computationally expensive because the

algorithm would need to consider all possible subsets of twenty actions. It is

also not e↵ective: by soliciting validation of twenty data items at once, we

lose out on the opportunity to integrate earlier actions before deciding the next

action. Our framework could be easily extended to solicit the top twenty actions

that have the highest expected utility. While slashing run-time by reducing the

number of iterations, this approach is expected to converge to ground truth

slower than when we validate one data item at a time. (We present the results

of this approach in Section 4.5.5).
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4.4.4 Feedback Errors

So far, we have assumed access to accurate feedback from an expert. Real-world

applications, however, are often faced with two major concerns: (1) Experts are

expensive and often vary across domains; (2) Users (experts and otherwise) often

give erroneous feedback.

To address these issues, in light of the recent advances in crowdsourcing [27], ap-

plications often turn to collecting feedback from a crowd of readily-available workers.

Note that workers add a third dimension to the problem of data fusion previously gov-

erned by data items and sources; worker errors are independent of source (extraction)

errors. Prior research that deal with non-experts [30,31] jointly estimate user quality

and true labels of data items, and query only the more trustworthy users in subse-

quent feedback rounds. The present work focuses on true labels of data items and

does not address modeling the quality of users in a crowd setting. We assume that the

crowd provides us either a single claim considered (partially) correct or probabilities

representing correctness of claims of a data item.

Consider the case when a user (or, crowd) provides feedback for the data item

that our ranking algorithm has determined to be the most beneficial for fusion. In

the best case, all feedback is correct. To integrate erroneous input into our frame-

work, we translate imperfect feedback to correctness of claims and leverage this prior

knowledge, along with the observations, to estimate the correctness of claims for rest

of the data items.

1. Feedback confidence. In some cases, users express confidence in their feed-

back, e.g., ‘80% certain that v
k
i is the correct claim for data item Oi’. We

incorporate this knowledge into our model by assigning the confidence to cor-

rectness of the claim, i.e., pki = 0.8 and the rest as 0.

2. Incorrect feedback. This case pertains to quality of the user (or, crowd) pro-

viding feedback. In case of a crowd, we assume that the crowdsourcing system

processes conflicting answers from workers and provides the most accurate la-
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bel.Knowing the user’s (or, crowd’s) error-rate ✏, e.g., on 4 out of 6 instances,

the feedback is incorrect, we compute the expected utility gain over correct and

incorrect feedback. If the provided claim v
k
i is correct, we set p

k
i = 1 and the

rest as 0. Otherwise, we set pki = 0 and set a uniform probability distribution

for rest of the claims, i.e., pri = 1/|claims| whenever r 6= k.

3. Conflicting feedback. We also consider the case when, instead of providing

a single correct claim for a data item, the crowd simply presents the answers

from di↵erent workers. For example, say for data item oi having three claims

(vAi , v
B
i , v

C
i ), 6 workers agree on v

A
i being correct, 3 agree on v

B
i and 1 says claim

v
C
i is correct. We summarize this information in the form of probabilities either

by counting or some other mechanism, i.e., we conclude that (pAi , p
B
i , p

C
i ) =

(0.6, 0.3, 0.1) and feed this knowledge to the data fusion model.

4.5 Experimental Evaluation

This section presents an empirical evaluation of the proposed solutions on two

real-world datasets. Our objectives are: (1) To assess the e↵ect of acquiring feedback

in improving the performance of data fusion, (2) To evaluate the proposed ranking

algorithms, and (3) To analyze the trade-o↵s between e↵ectiveness and e�ciency

o↵ered by the various approaches. Moreover, we study the behavior of the methods

on data with di↵erent characteristics and with respect to parameters such as batch

size and erroneous feedback.

4.5.1 Datasets

To validate the proposed methods, we conducted experiments on the following

real-world datasets (Table 4.9):
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Table 4.9.: Statistics of real-world datasets.

Books FlightsDay Population Flights

Items 1, 263 5, 836 40, 696 121, 567
Sources 894 38 2, 545 38
Claims 24, 303 80, 452 46, 734 1, 931, 701

10
0

10
1

10
2

10
0

10
1

10
2

10
3

N
u
m

b
e
r 

o
f 
C

la
im

s

Number of Sources

Books Dataset
Power Law Function Fit

(a) Books.

100

101

102

103

104

100 101 102 103
N

u
m

b
e
r 

o
f 
C

la
im

s

Number of Sources

Population Dataset
Power Law Function Fit

(b) Population.

Figure 4.3.: Long-tail characteristics in real data. Most sources provide information
on a small fraction of and few provide data about a large number of items.

Books: We used the books dataset from [8] that contains a listing of computer science

books and their authors as provided by bookstores registered at abebooks.com.

Flights: We used the flights dataset from [1] that contains status information for

flights over an entire month as reported by 38 sources. A data item is an attribute

(such as scheduled arrival time) of a particular flight. We permit slightly di↵erent

reported values (to a maximum di↵erence of 10 minutes) in flight times that might

have arisen due to slight lag in updates, or error in estimating times.
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FlightsDay: We used a one-day snapshot of Flights (for the day of 12/1/2011); this

dataset is representative of the Flights dataset that spans over a month’s time.

Population: We used the city population dataset from [66] that contains Wikipedia

edit histories of the populations of certain cities in a given year. To account for un-

reasonably large values and to have a source provide a single claim per data item, we

adopt preprocessing steps similar to [13].

For simplification, we consider only those flight and population data items that have

up to two contesting values. In Books, we consider the top two author sets per book.

Data Characteristics: We notice that our real-world data-sets exhibit interesting

properties: (i) Most of the data items in the flights datasets are connected to each

other because the small number of sources provide information on almost all data

items, (ii) Both Books and Population exhibit long-tail characteristics (Figure 4.3),

i.e., the distribution of number of claims per source follows the power law phenomenon

where more than 90% sources provide information on fewer than 4% data items. Such

varied characteristics of data allow us to evaluate our approaches in di↵erent scenarios.

Feedback Simulation. We simulated user feedback for data items by providing

feedback as determined by the ground truth. We used the silver standard provided

in [8] as the ground truth for Books. For Flights, we considered data provided by each

of the carrier websites, American Airlines, United Airlines and Continental, to be the

ground truth. We manually identified the true claim for data items in Populationthat

have more than one claim.

4.5.2 Competing Methods

We compared the following ranking approaches:

1. QBC (Section 4.4.1): This item-level ranking method uses the distribution of

claims to rank data items.
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2. US (Section 4.4.1): An item-level ranking method that uses fusion probabilities

to rank data items.

3. Greedy Upper Bound (GUB) (Section 4.4.2): Assuming that ground truth

is known, this method selects an action that results in the highest ground truth

utility gain according to Definition 4.4.2.

4. MEU (Section 4.4.2): In the absence of ground truth, this method selects the

action that has the maximum expected utility gain.

5. Approx-MEU (Section 4.4.2): A decision-theoretic approach that ranks data

items according to their approximate impact on other unvalidated data items.

6. Random: This näıve method selects an action at random; all data items are

considered equally beneficial.

We implemented all the algorithms in Java, and ran experiments on a Macbook Pro

with 8GB RAM, 2.7 GHz Intel Core i5 processor, and OSX El Capitan 10.11.5.

Performance Metrics

E↵ectiveness: To evaluate the e↵ectiveness of the proposed methods, we conducted

a sequential validation of all data items having conflicting claims (in the order de-

termined by a given method) and obtained an assignment of true and false claims

using a truth function T . We report the following metrics on the results:

1. Distance to ground truth: We report the improvement in output of data

fusion after an action as the reduction in distance of probabilities of claims to

ground truth defined as:

distance to ground truth =
|O|X

i=1

X

vki 2Vi

�(T (vki ))(1� p
k
i )

|O|
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where �(T (vki )) = 1, if vki = true. Intuitively, distance to ground truth can

be seen as the average error of data fusion. The smaller the distance to ground

truth, the more accurate is the output of fusion.

2. Uncertainty: We report the reduction in uncertainty over output of data fusion

defined as the entropy across all data items:

uncertainty = �
|O|X

i=1

|Vi|X

k=1

�p
k
i log(p

k
i )

where p
k
i is the probability that claim v

k
i 2 Vi is correct. A higher value of

uncertainty indicates less confidence in the output of data fusion.

Once a data item is validated, we retain the validation result and therefore, observe

a cumulative gain of all validations. Figure 4.4 presents example curves for the

e↵ectiveness metrics that start at 0 (when no data item is validated) and gradually

approach �100% (when all items are validated). A plot closer to the axes indicates

a better method.

E�ciency: To evaluate the e�ciency of an approach, we report the average time it

takes to determine the next action.

4.5.3 Evaluation of Ranking Strategies

In this section, we evaluate e↵ectiveness of the item-level ranking strategies (Sec-

tion 4.4.1) and the decision-theoretic framework (Section 4.4.2) in improving the

performance of data fusion. Our best-case decision-theoretic mechanism involves a

utility function based on the ground truth.

E↵ectiveness. Assuming the availability of a ground truth utility function, we

demonstrate in Figure 4.4, the gradual improvement in distance to ground truth for

increasing number of validated data items for all the validation methods.

As illustrated in Figure 4.4, all the approaches improve the distance of the output

of fusion to ground truth, albeit by various degrees. Random almost linearly decreases
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Figure 4.4.: E↵ectiveness of di↵erent ranking strategies measured as the reduction in
distance to ground truth against number of items validated.

the distance to ground truth indicating that only the number of actions determines its

e↵ectiveness. QBC and US, through guided selection of data items, converge to ground
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truth faster than Random; QBC consistently performs better than US. Specifically, in

the long-tail datasets, because the adopted data fusion model assigns either very high

or low probabilities to claims, most of the data items have very low uncertainties

and therefore, US is unable to distinguish them. On the other hand, true quality of

the sources in dense datasets is aptly reflected in their accuracies and correctness of

claims. The data items selected by US are also ones that the data fusion model has not

been able to resolve, indicating that these items are probably not well-connected to

other data items. Validating these data items, therefore, does not have much impact

on the accuracy of other items.

We notice that MEU is consistently superior to US, indicating that we benefit from

a method that aims at reducing uncertainty across all data items instead of resolving

a single uncertain data item. We also observe that MEU and QBC have contrasting

performances in long-tail datasets and in dense data. This behavior is attributable

to the structure of the datasets: each source in dense data (e.g., FlightsDay) provides

information on a large number of items. The change in accuracy of a source upon a

validation is, therefore, not large enough to propagate to other items. It is useful in

such cases to validate items with higher vote entropies first.

Not surprisingly, GUB has the steepest initial curve among all the methods. GUB

takes advantage of the ground truth information and, therefore, theoretically, has the

best performance in reporting the distance to ground truth.

Interestingly, we observe that after GUB, Approx-MEU has the best performance in

FlightsDay and Books — the method estimates expected correctness of claims from

a validation and aims to reduce uncertainties in the estimates across all data items,

thus outperforming both the item-level ranking algorithms (QBC, US). However, in

Population, the room between QBC, Approx-MEU and MEU is not very large. This

similarity in performance of the methods is due to sparsity of the data (|V|/(|O| ⇥

|S|) = 0.04%) which results in a very small portion of data items (⇠ 2.5%) having

more than one claim. The idea then is to identify among these items, those that are
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Table 4.10.: Time taken to determine the next action.

time (sec) QBC US MEU ApproxMEU

Books 0.01 0.001 11.73 0.231
FlightsDay 0.045 0.002 90.00 4.401
Population 0.14 0.011 > 5 min 9.728

time (sec) QBC US ApproxMEU5 ApproxMEU10

Flights 7 4 146 348

the most beneficial to others. Both Approx-MEU and MEU, therefore, have an advantage

over QBC that does not take into account the holistic impact of an action.

To scale up Approx-MEU to large dense data (Flights), we set k = 10 in Approx-MEUk.

With as few as a tenth of the total number of data items considered for validation,

Approx-MEUk is seen to achieve higher quality fusion results than QBC and has signifi-

cantly better performance than US. Although Approx-MEU and QBC are comparable in

early validations, Approx-MEU displays a notably rapid rate of convergence to ground

truth as more items are validated. The results further confirms e↵ectiveness of the

decision-theoretic framework over item-level ranking methods. However, considering

both e↵ectiveness and e�ciency, in such large dense data, QBC might be a better

choice than Approx-MEUk if k << |O|.

E�ciency. In Table 4.10, we report the average time taken by the methods for one

validation (recall that we cannot compare GUB on real data, and we cannot scale MEU

to large dense data). The item-level ranking algorithms (QBC, US) are observed to

be significantly faster than the decision-theoretic framework (MEU, Approx-MEU); QBC

makes a single pass over all data items and US ranks them after each validation whereas

MEU and Approx-MEU fuse data with each claim of an item separately considered as

prior knowledge. The high numbers for MEU motivate the need for a cheaper (but

e↵ective) alternative. Approx-MEU, while still slower than QBC and US, is faster than

MEU by almost two orders of magnitude. Our goal for e�ciency is to provide an

interactive validation time for users of a data fusion system. We conclude that MEU
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Figure 4.5.: Comparing methods based on entropy utility function (MEU,
Approx-MEU) against ground-truth-based method (GUB).

cannot be used for datasets typical to data fusion. From a theoretical standpoint, the

time for MEU is based on time for the fusion system since it runs the system for all

claims of each data item.

Practicability of Entropy Utility. The strength of GUB lies in its access to a

ground truth utility function. However, real datasets provide the ground truth for a

small subset of data items. In this experiment, we assess the feasibility of entropy

utility function as a substitute to the ground truth utility function by comparing the

performance of entropy-utility-based methods (MEU, Approx-MEU) against that of the

ground-truth-based method (GUB).

As shown in Figure 4.5, MEU and Approx-MEU achieve a greater reduction in un-

certainty than GUB. This mechanism comes at the price of MEU converging to ground

truth at a rate slower than GUB (Figures 4.4(a) and 4.4(b)). Interestingly, the rate of

convergence to ground truth of Approx-MEU is better than MEU and is almost identi-

cal to GUB. Practically, however, GUB is infeasible; MEU and Approx-MEU are our best

viable alternatives.
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Relation between performance metrics In this experiment,we notice that the

plots representing the distance to ground truth and those representing the reduction

in uncertainty follow the same trend, i.e., as the distance to ground truth decreases,

the uncertainty is also reduced. Moreover, the rate of reduction in these two metrics

appears to be comparable for GUB and MEU. Theoretically, we can explain this behavior

in one direction: as the database gets closer to ground truth, the data fusion system

becomes more certain in its predictions. Therefore, the uncertainty of the database

is expected to decrease. On the other hand, as uncertainty decreases, there is no

guarantee that the fusion system would fare better in predicting correct claims; it

simply might be more certain in wrong predictions.

To better understand the relation between the two metrics, we conducted an

experimental study of the metrics for the fundamental methods, GUB and MEU (since

these are our gold standards), on synthetic datasets generated using a number of

parameters.

Synthetic Data Generation. Our objective in generating synthetic data is to

replicate dense real-world data with |O| >> |S| (typical datasets for data fusion

systems, e.g., see [1]). We model most of the sources to be of good quality with few

very good and few poor sources. Source accuracies, A(Sj), can therefore be assumed

to follow a normal distribution: A(Sj) ⇠ N(amean, asd) where amean is the average

accuracy and asd is the standard deviation of the source accuracies. Density of the

data, i.e. the probability that a source votes for a data item, is specified by d. The

default values for the parameters, amean = 0.8, asd = 0.1 and d = 0.4, correspond to

the characteristics of real datasets. Source Sj provides a claim for data item oi with

probability d and the claim is correct with a probability A(Sj).

Observation. As seen in Figure 4.6, we observe empirically that the distance to

ground truth and uncertainty are strongly correlated. This study is further supported

by the Pearson’s correlation coe�cient, ⇢ = 0.86. For FlightsDay, ⇢ = 0.71 and for

Books, ⇢ = 0.72, indicating a moderately positive correlation. Specifically, uncertainty

in the fusion predictions and their distance to ground truth go hand in hand. This
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Figure 4.6.: Scatter plot showing the relation between di↵erent performance metrics.

additionally confirms the suitability of entropy utility as an alternative to ground

truth utility function.

Takeaways. (1) Active feedback improves data fusion better than a passive approach

(Random). (2) The decision-theoretic framework (MEU, Approx-MEU) exhibits e↵ec-

tiveness superior to that of the item-level ranking approaches (QBC, US); in practice,

however, the latter are significantly faster methods. (3) The entropy utility function

is a suitable alternative to the ground-truth utility function. (4) MEU has an extreme

computation cost and cannot be used for validation on large datasets. (5) Approx-MEU

is a cheaper, and also e↵ective, substitute to MEU.

4.5.4 Exploring Approx-MEU

As mentioned in Section 4.4.2, in the worst case, Approx-MEUmandates an all-pairs

computation of the impact of data items on each other — still expensive in datasets

where all data items are connected to each other. In Section 4.4.3, we discussed

optimizations to reduce the computation cost by shrinking the search space for the
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Figure 4.7.: Hybrid approach combining QBC and Approx-MEU. Figures depict the
e↵ect of expanding the set of candidates for validation in Approx-MEU.

impact computation step; we now explore the e↵ect of this approach i.e., the role of

k in Approx-MEUk, on the improvement in data fusion.

E↵ectiveness. Figure 4.7 demonstrates the various degrees of improvement o↵ered

by Approx-MEUk as k varies. Subscript k denotes the fraction of all data items con-

sidered for impact computation. When k = 5, we consider only the top 5% data

items ranked first according to their vote entropies and then, in the order of their

entropies over probabilities of claims. We compute only the impact of these 5% data

items on each other; evidently, the line ends when 5% of all data items are vali-

dated. We observe that as k increases, more data items are considered in the impact

computation step and the system converges to ground truth faster. Approx-MEU,

while less e↵ective in the beginning, gradually surpasses the improvement in fusion

achieved by the Approx-MEUk methods. The plots indicate that for early validations

(less than 8% of items validated), choosing as small a value as k = 30 (Books) or

k = 15(FlightsDa y) results in better conflict resolution than Approx-MEU; by tun-

ing k, we can e↵ectively scale up the decision-theoretic framework with estimated

probabilities to large datasets.
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Table 4.11.: Time taken (in seconds) by QBC, US and Approx-MEUk with di↵erent
values of k.

time(sec) Books FlightsDay Flights
QBC 0.08 0.07 6.0
US 0.09 0.12 1.8

Approx-MEU5 0.04 0.23 156
Approx-MEU10 0.09 0.73 323
Approx-MEU15 0.15 0.98 475

E�ciency. We report in Table 4.11 the time taken for one validation on the three

datasets by QBC, US and Approx-MEUk with di↵erent values of k. As expected, with an

increase in k, as more data items are considered for impact computation, Approx-MEUk

takes longer to determine the next action. However, for the large-scale Flights data,

Approx-MEU has a significantly rapid convergence to ground truth than QBC and US

in slightly more than 5 minutes.

Takeaways: (1) By limiting the fraction of data items for the impact computation

step, Approx-MEU can be e�ciently scaled up to large datasets. (2) Di↵erent values

of k o↵er trade-o↵s between e↵ectiveness and e�ciency. Specifically, the smaller the

value of k, the faster it takes to determine the next action although a method with a

higher k rapidly converges to ground truth.

4.5.5 E↵ect of Batch Size

Based on our intuitions about batch size (Section 4.4.2), we now study the e↵ect

of validating multiple data items simultaneously on the performance of our methods.

E↵ectiveness. As shown in Figure 4.8(a), performance of QBC is not a↵ected by

batch size because by selecting data items based on their vote entropies, at the end

of 200 actions, the set of validated data items remains unchanged.
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Figure 4.8.: E↵ect of batch size on e↵ectiveness of the methods and time taken to
validate 200 claims from FlightsDay.

With an increase in the batch size, the distance to ground truth steadily increases

for US because by validating multiple data items at once, it loses the opportunity to

adaptively integrate the acquired feedback.

Approx-MEU displays an interesting behavior: the method converges to ground

truth faster with an initial increase in batch size, and after batchSize= 50, its per-

formance worsens. The initial improvement is because with smaller batches, the

algorithm selects data items having high entropy (e.g., entropy > 0.67); as the batch

size increases, the algorithm selects data items with a mix of high and medium en-

tropies (e.g. entropy > 0.6). By not ordering data items with medium entropies

correctly, the performance of the method deteriorates with an increase in batch size.

E�ciency. We observe in Figure 4.8(b) that the time taken by QBC and US, after

sorting, is e↵ectively the time taken to fuse the data. As more data items are vali-

dated together, the fusion system reaches a steady state faster and the methods have

almost flat gain in the time for all validations. Going from a batchSize of 1 to 200,

the runtime of Approx-MEU, however, reduces by more than one order of magnitude.

Specifically, for FlightsDay, we observe that a batchSize= 50 achieves the best im-
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provement in fusion in about one-sixth the time taken by validating individual data

items.

Takeaways: Increasing the batch size: (1) has no e↵ect on QBC while it typically

degrades performance of US and Approx-MEU (although the latter shows improvement

with smaller increase in batch size), and (2) drastically reduces the time taken for

validations by ApproxMEU.

4.5.6 Feedback Errors

To evaluate our ranking approaches in the presence of imperfect feedback, we per-

form experiments that study e↵ectiveness of the methods in di↵erent error scenarios

as discussed in Section 4.4.4. We perform experiments on Books and FlightsDay be-

cause results were the most promising for these datasets in the previous experiments.

Due to space constraints, we present only few of the experiment results.

Conflicting feedback. In this experiment, we assume access to feedback from a

crowd of workers who provide correctness of all claims instead of providing a single

correct label. We consolidate conflicts of the crowd by varying (1) the fraction of data

items that it disagrees on (i.e., the crowd provides correctness of all claims of say, 5%

data items), and (2) their consensus on the correct claim for a data item (i.e., 70%

probability that the true claim is indeed correct). We vary the first parameter from

10%� 50% and the second from 10%� 90% and report the results of this experiment

in Figure 4.9. Lines in the plots compare a method when correctness of the correct

claim varies from 0.9 to 0.1. As expected, as the crowd varies its consensus on the

correct claim from 90% to 10%, the performance of all the methods consistently

deteriorates. QBC and US start falling apart as the crowd’s consensus degrades. The

methods with 90% consensus, however, exhibit comparable performance to their no-

error counterparts even when the fraction of data items with conflicting feedback

increases. On the other hand, Approx-MEU demonstrates substantial improvement in

fusion even when the consensus goes to 50% on 30% of all data items. It only starts
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(c) ApproxMEU: 10% conflicts.
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(d) QBC: 30% conflicts.
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(e) US: 30% conflicts.
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(f) ApproxMEU: 30% conflicts.
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(g) QBC: 50% conflicts.
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(i) ApproxMEU: 50% conflicts.

Figure 4.9.: Conflicting feedback (Books). Each row compares methods when x% of
items have conflicting feedback.

to worsen when the crowd assigns really low probability to the correct claim for 50%

of all data items.

Feedback Confidence. We simulate the confidence in feedback as a probability

attached to it. This could also be likened to worker (or, crowd) quality, e.g., there

is only 80% probability that any feedback provided by Worker A on a data item

is correct. We assume the confidence to be varying from 80% � 100% and report

the results of this experiment in Figure 4.10. We notice that performance of the

methods consistently deteriorates as confidence decreases from 100% to 80%. While

with even 90% conviction in feedback, QBC and US no longer improve fusion on Books,
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Figure 4.10.: Feedback confidence (Books). Subscript denotes user confidence (or,
worker quality).

Approx-MEU is the most resilient to such feedback errors. Even at 80% confidence,

Approx-MEU adaptively integrates erroneous input and continues to improve fusion in

initial validations (although with diminished power) before tapering o↵ and worsening

after ⇠ 8% of the data items have been validated. Approx-MEU.9 almost levels out

after 10% items are validated, and with Approx-MEU.8, soliciting feedback after 5%

validations does not boost fusion. The net improvement with Approx-MEU.8 after 15%

of items are validated, however, is comparable to that achieved in QBC and US without

any feedback errors.

Incorrect Feedback. We assume the hypothetical case when we have an ine↵ective

user that (either knowingly or unknowingly) provides incorrect answers. We further

consider the user to be wrong on 0% � 30% of data items and report the results

in Figure 4.11. With slight abuse of notation, the subscript with a method is used

to represent the fraction of data items that the user is wrong about. We notice

that as the fraction of erroneous data items increases, the methods essentially worsen

fusion. However, even with 10% of data items judged incorrectly by the user, QBC
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Figure 4.11.: Incorrect Feedback (FlightsDay). Subscript denotes fraction of items
with incorrect feedback.

and approx-MEU exhibit better performance than US without incorrect feedback. This

demonstrates that on dense data, identifying items that have high entropy is more

beneficial and more resilient to feedback errors than selecting items with US.

Takeaways: (1) Among all the approaches, Approx-MEU is most robust in the pres-

ence of feedback errors. (2) Approx-MEU continues to improve fusion even when the

feedback is close to incorrect for a small fraction of data items. (3) On dense data,

QBC is resilient to completely incorrect feedback on a small fraction of all data items.

4.6 Summary

In this chapter, we proposed a pay-as-you-go approach for e↵ectively soliciting

feedback from users to resolve conflicts and improve the performance of existing data

fusion techqniques.

To judiciously utilize the user, we proposed generating e↵ective ordering of data

items for validation. We presented algorithms that assess data items individually
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by considering their local characteristics, and also proposed a novel decision-theoretic

framework that evaluates data items holistically by their ability to improve the perfor-

mance of fusion. We further devised approximation formulae to scale up the decision-

theoretic framework to large-scale datasets, and also explored scenarios in the presence

of imperfect feedback.

The main highlights of the proposed approaches are that they do not assume

any domain-knowledge constraints or access to ground truth. Furthermore, in the

presence of noisy feedback from a crowd of workers, any of the existing crowdsourcing

approaches can be used to obtain the most accurate label for data items and plugged

into the user feedback framework.

Our experimental evaluation on real-world datasets confirmed that guided feed-

back rapidly increases the e↵ectiveness of data fusion. The proposed methods exhib-

ited di↵erent behavior for data with di↵erent characteristics, and also o↵ered trade-o↵

between e↵ectiveness and e�ciency, and the amount of feedback acquired.

Results from this chapter were published in [67,68].
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5 LEVERAGING DATA RELATIONSHIPS TO RESOLVE CONFLICTS

In this chapter, we propose a formalism to express entity-relationships among claims

of data items and design a framework to integrate the data relationships with existing

data fusion models to improve the e↵ectiveness of fusion.

This chapter is organized as follows: in Section 5.1, we present a motivating

example for the problem of integrating entity-relationships among claims of data

items, describe the solution overview and outline the summary of our contributions.

We formally present our problem in Section 4.2. We explore entity-relationships

among claims, describe the relationship model and outline steps to pre-process it in

Section 5.3.In Section 5.4, we discuss algorithms to integrate the relationship model

with data fusion models and solutions to determine correct claims that are consistent

with each other. We conduct an experimental evaluation of our approach on real-

world data in Section 5.5, and finally summarize the chapter in Section 5.6.

5.1 Introduction

With the advent of the collaborative web, while innumerable data providers fur-

nish increasing amounts of information on diverse data items, often there is little to no

restraint on the quality of data from di↵erent providers. Data sources often provide

conflicting information either unknowingly (e.g., failing to furnish updated data, mak-

ing errors during data collection, copying from other sources) or deliberately (e.g., to

mislead facts). A number of data fusion techniques have been proposed [5] to resolve

data discrepancies from disparate sources and present high-quality integrated data

to users. Recently, [8, 12] studied the problem of dependence among sources in the

context of data fusion whereas [37,38] studied the interdependence among data items

in the fusion of spatial and temporal data. However, the space of existing associations
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Table 5.1.: Table shows five websites providing information about music genres of
four songs. Correct claims are marked with a (*).

ID Data Item S1 S2 S3 S4 S5

O1 Silent Night Christmas Pop* Pop/Rock*

O2 Feel It Still Pop* {Alt Pop Rock*, Rap} Rock* Pop/Rock* Pop*

O3 Perfect Pop* Classical Pop/Rock* Classical

O4 Unforgettable Rap* {Pop, Alt R&B*} Classical Hip Hop*

between claims of data items has largely been unexplored. Failing to acknowledge

these relationships has been observed to account for as much as 35% of false negatives

in data fusion tasks [69]. The rich space of relationships among claims of data items

makes it challenging to distinguish correct from incorrect information as illustrated

next.

Example 5.1.1 Consider an example of information provided by five websites on

music genres of certain songs (Table 5.1). Sources provide conflicting information

for the same data item, e.g., S2 provides Christmas as the genre for song Silent Night

whereas S3 claims it to be Pop and S4 provides Pop/Rock as the genre.

Claims for data items exhibit various entity-relationships: (a) Sometimes, claims

are hierarchically related, e.g., Pop/Rock is a sub-genre of genres Pop and Rock

whereas Alt R&B has stylistic origins in Hip Hop; (b) a claim may be referred to

by di↵erent names, e.g., in the context of music, Hip Hop and Rap are widely consid-

ered to agree with each other; (c) claims may be mutually exclusive to other claims.

For example, the song Unforgettable may not be simultaneously of the Classical and

the Hip Hop genres. Note that entity-relationships among claims can be obtained from

domain-specific databases (e.g., structured vocabulary input [42], map databases) and

general purpose knowledge bases [40, 41]. (The relationships among claims for this

example have been obtained from DBpedia [41] and AllMusic 1, the popular online

music guide.)

1www.allmusic.com
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Single-truth data fusion models [3, 8] mostly regard claims to be mutually exclu-

sive while some consider implications (or similarities) among the various observations.

The approaches adopt ad hoc measures, such as string edit distance, di↵erence be-

tween numerical values, and Jaccard similarity, to identify whether or not one claim

implies another. These measures, however, may not be directly applicable to data

that exhibit relationship semantics di↵erent from notions of implications addressed

in prior work, e.g., when claims are real-world entities related to each other beyond

string edit-distance. On the other hand, multi-truth fusion models [12,16] completely

disregard the existence of relationships among claims of data items. Implications

between observations may o↵er completely new scenarios in the multi-truth setting,

e.g., integrity constraints may mandate that multiple true claims be associated to

each other.

Furthermore, the correctness probabilities produced by di↵erent data fusion mod-

els often do not reflect the true likelihood of a claim being true: without any integrity

constraints, a data fusion model may generate correctness probabilities such that for

the song Perfect, sub-genre Pop/Rock rather than genre Pop has a higher probability

of being correct. However, since the latter is a broader genre, one would expect it

more likely to be true. Existing data fusion models do not account for these kinds of

constraints on the correctness probabilities of claims.

Given the knowledge of how di↵erent music genres are related to each other, a

data fusion system that considers Pop and Pop/Rock to be distinct genres (for the

song Perfect) would benefit from the knowledge by re-evaluating the correctness prob-

abilities of these claims and by reconsidering claims provided by sources S2 and S4 to

improve the output of fusion on other data items. There are, however, certain chal-

lenges in integrating the domain knowledge information on entity-relationships among

claims with the data fusion process. First, there can be permutations of agreement or

disagreement among sources at di↵erent granularities of information. For example,

sources may: (a) agree on a broader concept but disagree on specifics, (b) agree on a

specific concept and disagree on broader ones, or (c) may not reach a consensus at any
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granularity. A näıve solution will gather evidence for and resolve the ‘general’ claims;

however, the downside to the approach is that while we gain confidence about broader

claims, no additional evidence is obtained on the correctness of specific claims. Sec-

ond, existing data fusion models vary widely in their underlying conflict resolution

mechanisms (e.g., Bayesian-based, optimization-based, probabilistic-graphical-model-

based). We need a way to represent the data relationships that facilitates seamlessly

integrating it with the various fusion models. To address the aforementioned issues,

we require principled strategies to represent the domain knowledge information on

relationships among claims and leverage it e↵ectively to jointly assess data sources

and infer correctness probabilities of claims.

In this chapter, we address the problem of integrating entity-relationships among

claims with data fusion process to improve the e↵ectiveness of existing data fusion

models. Our main contributions can be summarized as follows:

• We propose to represent the knowledge of data relationships among claims in

the form of an arbitrary directed graph. We outline pre-processing steps for

e↵ective representation and e�cient traversal of the graph. (Section 5.3)

• We propose an approach to integrate the directed graph of data relationships

with existing data fusion models and propose an algorithm to leverage the graph

to generate consistent correct claims for each data item. (Section 5.4)

• Our experimental evaluation on real-world data shows the applicability of our

approach to a wide range of data fusion models and demonstrates that incor-

porating the domain knowledge of entity-relationships among claims can signif-

icantly improve fusion results. (Section 5.5)
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5.2 Problem Formulation

We consider database instance D, data fusion model F and binary relation R

denoting the entity-relationships among claims of data items in D, and formulate the

problem of leveraging relation R to improve the e↵ectiveness of fusion

Definition 5.2.1 A binary relation R ✓ V ⇥ V denotes the entity-relationships

among claims V = {V1, . . . ,V|O|} of data items in O.

Problem Statement. It is required to develop a relation-aware data fusion frame-

work, denoted by FR, that integrates data fusion model F with relation R to infer

the correctness probabilities of claims in database D.

5.3 Exploring Entity-Relationships

In this section, we review the various entity-relationships existing between claims

of data items and propose a formalism to express the prior domain knowledge of

entity-relationships among claims.

5.3.1 Observations

As an extension to existing relationships among real-world entities, we observe

subsumption, overlaps, equivalence and disjointedness among claims of data items

(also detailed in Example 5.1). In the following, we provide an intuition of what

these relationships mean in the context of correctness of claims:

Subsumption/Overlaps. A claim may be part of one or more claims, e.g., Pop and

Rock, as music genres, are generalization of the Pop/Rock genre. Any source

that provides Pop/Rock definitely agrees with the Pop and Rock genres. We say

that genre Pop/Rock implies or supports genres Pop and Rock.

Equivalence. Real-world entities may be referred to di↵erently by di↵erent sources

and contexts, e.g., Hip Hop music is referred to as Rap in some cultures and
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contexts. Therefore, any source that provides Hip Hop as a genre agrees with

Rap and vice versa. The relation between such claims elicits a bidirectional

implication, i.e., both the claims imply each other.

Mutual exclusion. In certain settings, the correctness of a claim may require all

other claims to be declared false. For example, a song-listing integration system

may mandate that a song be either of genre Alt R&B or Classical but not both.

Therefore, if Alt R&B is considered the correct genre for data item O4, Classical

cannot be correct and vice versa.

From these observations, we recognize two themes, namely implication and mutual

exclusion, in the relationship among claims of data items. Implication summarizes

subsumption, overlaps and equivalence relationships, and indicates claims that can

be correct or incorrect at the same time. Mutual exclusion dictates the set of claims

that cannot be simultaneously correct.

5.3.2 Relationship Model

Based on these two themes, we define relation R ✓ V ⇥ V to describe implication

(relationship) between two claims: that is (u, v) 2 R if and only if u implies or

supports v. We observe that R is reflexive, transitive and neither symmetric nor

antisymmetric (because given (u, v) 2 R, (v, u) may or may not exist in R). Relation

R can be represented in the form of a directed graph G = (V,E) where V = V ,

i.e., vertices in G represent the set of distinct claims in V and edges in E represent

the relation between claims at the corresponding vertices. 8(u, v) 2 R, 9(u, v) 2 E

denoting the fact that claim represented by vertex u supports that represented by v.

In the rest of this chapter, where applicable, we will use claim v 2 V and the vertex

represented by claim v 2 V interchangeably. Subgraph Gi = (Vi, Ei) ✓ G represents

the relations over claims of data item Oi.

Following standard graph notation, if e = (u, v) 2 E, then v is a parent of u and

u is a child of v. If there is a path from u to v (denoted by u  v), then v is an
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ancestor of u and u is a descendant of v. An arbitrary directed graph thus defined

captures the observed relations among claims in the following way:

Implication relation is captured by reachability among vertices. If u v in G, then

u implies or supports v. Under this definition of implication,

1. v represents coarser information than u and encapsulates subsumption.

2. Overlapping claims have a common descendant. Formally, u overlaps with

v if there exists w such that w  u and w  v.

3. If u  v and v  u , then u and v represent equivalent claims such that

G contains a cycle which is incident with both u and v. Equivalent claims

are represented by equivalence classes of vertices in G.

Mutual exclusion is expressed by identifying claims that do not have a common

descendant, i.e., u and v are mutually exclusive if @w such that w  u and

w  v.

A directed graph (defined as above) over the claims of a data item presents general to

specific information as we move from its root (top) to leaves (bottom). When claims

are not related, G = (V,E) can be seen as a graph with claims as vertices with no

edges in between, i.e., E = ;.

Example 5.3.1 Figure 5.1(a) shows the directed graph of relations over claims of

data items in Table 5.1. The shaded subgraph denotes relations between claims spe-

cific to data item O4. Rock and Pop are overlapping claims that have a common

descendant: Pop/Rock. Hip Hop and Rap are considered equivalent claims as they are

on a cycle incident with both the claims. Moreover, claims Rap and Christmas are

mutually exclusive because they do not have a common descendant.

Removing redundancies. The aforementioned directed graph representation can

have a large number of redundant edges and vertices as illustrated next. Consider

subgraph G2 = (V2, E2) ✓ G consisting of claims of data item O2. Since edge (Alt
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Rap
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Alt Pop
Rock

Alt R&B

ChristmasClassical

(a) Directed graph G.

Pop Rock{Rap, Hip Hop}

Pop/Rock

Alt Pop
Rock

Alt R&B

ChristmasClassical

(b) Modified directed graph GT .

Figure 5.1.: Figure 5.1(a) shows the directed graph G of entity-relationships among
claims of data items in Table 5.1. Figure 5.1(b) shows modified graph GT obtained
as transitive reduction of the equivalent acyclic graph of G.

Pop Rock, Pop/Rock) 2 E2 and edge (Pop/Rock, Rock) 2 E2, by transitivity, Alt Pop

Rock  Rock causing edge (Alt Pop Rock, Rock)2 E2 to be redundant. Furthermore,

in the subgraph G4 = (V4, E4) ✓ G of claims of data item O4, claims Hip Hop and

Rap are in the same equivalence class and therefore, can be represented by a single

vertex.

We process graph G = (V,E) in the following two steps to achieve a concise

representation that facilitates e↵ective summarization and e�cient navigation:

1. Redundant Vertices. We remove redundant vertices in V by forming the

equivalent acyclic graph [70] of G, denoted by G⇤ = (V ⇤
, E

⇤). Vertices in G⇤

represent equivalence classes in G and edges in G⇤ represent edges between

the equivalence classes. G⇤ can be obtained by identifying strongly connected

components [71] of G. Consider vertices u, v 2 V . Let u
⇤ and v

⇤ respectively

represent the equivalence classes for claims u and v in G⇤ = (V ⇤
, E

⇤). For

u
⇤ 6= v

⇤, if 9(u, v) 2 E, then edge (u⇤
, v

⇤) 2 E
⇤. Note that G⇤ may still have

redundant edges because of the transitivity property.

2. Redundant Edges. We identify the unique transitive reduction [70] of G⇤,

denoted by GT = (V ⇤
, E

T ) ✓ G⇤. GT has no redundant edge, i.e., for u, v 2 V
⇤,
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if v is not a parent of u and u v, then edge (u, v) /2 E
T . Transitive reduction

GT has the fewest possible edges and has the same reachability relation as G⇤.

Subgraph G
T
i = (V ⇤

i , E
⇤

i ) ✓ GT represents the transitive reduction of Gi. Figure 5.1(b)

shows the graph obtained after processing directed graph in Figure 5.1(a).

Complexity Analysis. Equivalent acyclic graph G⇤ is obtained in O(|V | + |E|)

time [71] whereas transitive reduction GT can be derived in O(|V |�) steps [70] where

� � 2. Note that processing directed graph Gi depends only on the number of distinct

claims for data item Oi (which is usually not very large) and not on the number of

sources that provide information on the item.

In the rest of this chapter, we use G to represent the modified directed graph

representation GT and Gi to denote GT

i .

Supporting and Supported Claims. To integrate directed graph G with existing

data fusion models, we need to identify the following two sets of claims for each claim

v 2 Vi: (a) set of claims in Vi that support v, denoted by �(v,Gi); and (b) set of

claims in Vi that v supports, denoted by ↵(v,Gi). After identifying the vertex or

equivalence class in Gi that v belongs to, we add claims in the equivalence class and

claims that are its descendants in Gi to �(v,Gi), and add claims in the equivalence

class and claims that are its ancestors in Gi to ↵(v,Gi). The notion of supporting

and supported claims will be used in Section 5.4.1 to estimate source qualities and

correctness of claims.

5.4 Integration with Data Fusion

Given the entity-relationships among claims as described in G (obtained in Sec-

tion 5.3), in this section we outline the steps for leveraging G to resolve conflicts

during integration of data from multiple sources. We first describe how existing data

fusion models can be modified in the presence of G and then discuss how to utilize G

to determine correct claims for data items.



75

5.4.1 Revised Data Fusion Methodology

To determine which of the provided claims are correct and which incorrect, state-

of-the-art data fusion models [3, 8, 12] consider sources to play a pivotal role and

usually function in two steps: first, obtain source quality estimates; second, compute

the correctness of claims based on the computed source qualities. Given a data

fusion model F , characterized by computations of source quality measures Q
F and

correctness of claims P , we describe how to modify these two computations for F

given directed graph G over claims of data items.

• Estimating Source Quality. Existing fusion models evaluate sources either

in terms of a single measure (e.g., accuracy [8], trustworthiness [3]) or multiple

measures (e.g., precision, recall, accuracy, false positive rate [12, 16]). The

quality of source Sj, denoted by QF

j , is measured based on Vi(Sj), the set of

claims that Sj provides for data item Oi 2 O.

In the presence of entity-relationships among claims, a source, in addition to

claims directly provided by it, also implicitly supports claims that are supported

by the provided claims. Therefore, QF

j depends on claims in Vi(Sj) and claims

supported by those in Vi(Sj). Given directed graph Gi ✓ G for data item Oi,

claim v 2 Vi(Sj) supports claims in ↵(v,Gi) (Section 5.3). Consequently, we

replace Vi(Sj) by
�!Vi(Sj) = {↵(v,Gi) | v 2 Vi(Sj)} in the computation of QF

j .

Clearly, Vi(Sj) ✓
�!Vi(Sj).

Example 5.4.1 Consider source S2 in Table 5.1. Using the modified directed

graph in Figure 5.1(b), we observe that S2 supports claims as shown in Table 5.2.

Note that for each data item, we only consider the modified directed subgraph

over claims of that particular data item, e.g., since claim Hip Hop /2 V2, we do

not consider that Rap supports Hip Hop in the context of data item O2.

Comparing Table 5.2 with Table 5.1, we observe that out of the 11 claims S2

supports, 8 are correct resulting in a precision (fraction of claims provided that
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Table 5.2.: Claims provided or supported by source S2.

ID Vi(S2)
�!Vi(S2) Correct

O1 Christmas Christmas Pop, Pop/Rock

O2
Alt Pop Rock,

Rap
Alt Pop Rock, Pop/Rock,

Pop, Rock, Rap
Alt Pop Rock, Pop/Rock,

Pop, Rock
O3 Pop Pop Pop/Rock, Pop
O4 Pop, Alt R&B Pop, Alt R&B, Hip Hop, Rap Alt R&B, Hip Hop, Rap

are correct) of 8/11 = 0.73. Its recall (fraction of correct claims provided) is

8/11 = 0.73 as it provides 8 out of the 11 listed correct claims. Note that in the

absence of knowledge of relations among the claims of data items, the precision

and recall of S2 would be 3/6 = 0.5 and 3/11 = 0.27, respectively.

Procedure EstimateSourceQuality outlines pseudocode for estimating source qual-

ity measures given a fusion model and claim relationships. Note that when

training data is available, P(v) is defined for items in the training data and Q
F

is computed over those items. Otherwise, QF is initialized to random values,

and source quality and claim correctness are estimated iteratively.

• Estimating Correctness of Claims. The second step in data fusion models

estimates the correctness of claims by utilizing the estimated source quality

measures. The correctness of claim v 2 Vi, denoted by P(v), is computed in

terms of the quality measures of sources in S i(v), the set of sources that provide

v. Claims provided by good sources are considered more likely to be correct

than those provided by poor sources.

Intuitively, the correctness of claim v should depend not only on sources that

provide v but also on sources that implicitly support it — the latter can be

identified by identifying claims that support v. Given directed graph Gi ✓ G

for data item Oi, claim v is supported by claims in �(v,Gi). In estimating

the correctness of v by a particular data fusion model, we replace S i(v) by
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Algorithm 3 Estimating quality of sources

procedure EstimateSourceQuality(D, G, F , P)
for s 2 S do

for Oi 2 O do�!Vi(s) = {↵(v,Gi) | v 2 Vi(s)}
for v 2 �!Vi(s)) do

Compute QF(s) according to F based on P(v)
end for

end for
end for
Output QF , the quality measures of sources

end procedure

Algorithm 4 Estimating correctness probabilities of claims

procedure EstimateClaimCorrectness(D, G, F , QF)
for Oi 2 O do

for claim v 2 Vi do
S i(�!v ) = {S i(u) | u 2 �(v,Gi)}
for s 2 S i(�!v ) do

Compute P(v) according to F based on QF(s)
end for

end for
end for
Output P , the correctness probability of claims

end procedure

S i(�!v ) = {S i(u) | u 2 �(v,Gi)}. Again, S i(v) ✓ S i(�!v ). This step ensures that

general claims gather greater evidence with support from specific claims and

have higher correctness probabilities than them.

In the presence of directed graph Gi, instead of computing the correctness of

each provided claim for data item Oi, we compute the correctness of each vertex

in Gi. Doing so, we avoid having to separately estimate the correctness of

equivalent claims. Procedure EstimateClaimCorrectness outlines the pseudocode

for computing correctness probabilities given the knowledge of relations among

claims.
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Algorithm 5: ModifyDataFusion

Input: Database D, directed graph representation G, data fusion model F
Output: P correctness probabilities of claims
QF = EstimateSourceQuality(D,G,F ,P)
P = EstimateClaimCorrectness(D,G,F ,QF)

Given observations  , data fusion model F and directed graph representation G,

as discussed above, we integrate G with the processes of estimating source quality

measures and correctness of claims. We present the pseudocode for modifying F

using G in Algorithm 5.

Iterative fusion models [3, 8] randomly initialize source quality estimates and iterate

over lines 1 and 2 until QF converges. When ground truth data is available, fusion

models [12] utilize it to compute source quality estimates.

5.4.2 Determining Correct Claims

Having obtained the correctness probabilities, single-truth fusion models will con-

sider claim with the highest probability to be correct and multi-truth fusion models

will consider claims with probability greater than a threshold (usually 0.5) to be

correct. However, determining correct claims in the standard manner has certain

limitations: (a) single-truth fusion models will miss multiple correct claims, and (b)

multi-truth fusion models may output correct claims that are indeed constrained to

be mutually exclusive.

To address the aforementioned issues, given correctness probabilities P and di-

rected graph G, we describe the steps to determine correct claims for data items in

Algorithm 6. Lines 4-6 identify root nodes of the directed graph Gi over claims of

data item Oi. Lines 8-10 consider the vertex with maximum correctness probability,

currentNode, to be correct and add claims in currentNode to the list of correct

claims for data item Oi. The algorithm then identifies children nodes of the selected



79

Algorithm 6: DetermineCorrectClaims

Input: Directed graph representation G, correctness probabilities P
Output: V⇤, set of correct claims for data items in O
for Oi 2 O do

Initialization: considerNodes = ;; V⇤

i = ;
Let Gi = (Vi, Ei) ✓ G be the directed graph over claims in Vi

for vertex v 2 Vi do
if @ {(v, b) 2 Ei} then

considerNodes = considerNodes [ {v} . identify root nodes
end if

end for
do

currentNode = argmax
w2considerNodes

P(w)

for claim v 2 currentNode do
V⇤

i = V⇤

i [ {v}
end for
considerNodes = children of currentNode

while ( 9u | (u, currentNode) 2 Ei)
end for

vertex for further traversal and repeats lines 8-10 until a leaf node (i.e., vertex with

no children) is reached.

5.5 Experimental Evaluation

This section presents an empirical evaluation of the proposed approach on a

real-world dataset. Our objectives are: (1) to assess the e↵ectiveness of using the

knowledge of entity-relationships among claims in improving the accuracy of existing

data fusion models, and (2) to compare the e↵ectiveness of using arbitrary directed

graphs against existing approaches that consider prior domain knowledge of entity-

relationships among claims of data items.
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5.5.1 Competing Methods

We evaluate e↵ectiveness of using the domain information on entity-relationships

among claims on the following single- and multi-truth data fusion models (also de-

scribed in Section 3.2):

Voting: Näıvely assumes correct data to be more frequent than inaccurate data and

considers the most frequent claim of a data item to be correct.

TruthFinder [3]: Iteratively computes trustworthiness of sources and confidence in

claims, and selects claim with the highest confidence to be correct.

ACCU [8]: Iteratively computes accuracy of sources and correctness of claims by

assuming only one claim of a data item to be correct and rest incorrect.

PrecRec [12]: Computes source quality metrics assuming access to ground truth for

a subset of data items and uses the estimates to determine correctness of claims. The

method outputs multiple correct claims for a data item.

We further compared our approach of using arbitrary directed graphs (denoted

by DG) to the partial ordering solution [52](denoted by PO). We implemented all the

algorithms in Java.

5.5.2 Performance Metrics

To evaluate e↵ectiveness of the approaches, we present results according to their

precision, recall and F1-score. We measure the precision of an approach as the frac-

tion of claims output by the algorithm that are indeed true. Recall is measured as

the fraction of all correct claims that are output by the particular algorithm. We

measure the overall performance of an approach in terms of the harmonic mean of

its precision and recall, that weighs the two metrics evenly
⇣
i.e., F1 =

2.precision.recall
precision+recall

⌘
.

% inconsistency: We use the entity-relationships among claims of data items to

measure the fraction of pairs of claims considered correct by a data fusion model that

are unrelated and inconsistent with each other.
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5.5.3 Real-World Data

We conducted experiments on the Restaurants dataset in [34] that lists information

on restaurants in New York’s Manhattan area as provided by 12 sources. We observed

that the locations of these restaurants are conflicting but related and, therefore, chose

to determine their correct values for the snapshot of data collected on the last available

date (3/12/2009).

We identified restaurants by their names and removed those that were chains: if

a single source provides inconsistent claims for a restaurant, we consider it to be a

chain that may have multiple locations and remove all instances of such restaurants.

For example, if a source provides two neighborhoods or two street addresses for the

same restaurant, we consider the possibility that it is part of a chain of restaurants.

The resulting dataset had 11, 589 unique restaurants (we collected ground truth for

500). It should be noted that, we assume sources to be self-consistent (i.e., a source

by itself does not provide inconsistent claims) and ignore errors arising during data

collection by humans and sensors.

We extracted the di↵erent granularities of locations for restaurants as provided

by sources into separate claims. For example, claim “357 East 50th St, Midtown East”

was broken down into claims: 357 East 50th St and Midtown East. We extracted

relations among the claims using Wikipedia2 and corroborated with DBpedia and

Google Maps. Using the neighborhood definitions, we extracted relations of streets

and avenues with neighborhoods. We identified⇠ 1% of restaurants for manual review

of relations. Their claims included buildings that were represented by alternate street

addresses because of the di↵erence in data collection strategies of di↵erent sources.

As a result of inconsistencies across data sources, the resulting directed graph of

relations among claims is not just a tree (as in the partial order solution [52]) but can

be any arbitrary directed graph with cycles. A partial ordering solution, therefore,

will not be directly applicable to resolve such conflicting data.

2https://en.wikipedia.org/wiki/List of Manhattan neighborhoods
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Table 5.3.: E↵ectiveness of data fusion models on Restaurants. While e↵ective in
identifying correct claims, PrecRec outputs inconsistent correct claims.

Voting TruthFinder ACCU PrecRec
Recall 0.210 0.243 0.251 0.919

Precision 0.758 0.874 0.904 0.835
F1 0.329 0.380 0.393 0.875

% Inconsistent - - - 0.146

5.5.4 The Case for Consistency

To demonstrate the need for approaches that generate consistent correct claims,

we run the described data fusion models (Voting, TruthFinder, ACCU and PrecRec)

on Restaurants and report their performance as measured by precision, recall and

F1-measure in Table 5.3. We observe that while the multi-truth model (PrecRec)

is, expectedly, able to retrieve a larger fraction of correct claims, it is less accurate

than the single-truth models TruthFinder and ACCU. We dig deeper into the recall

of PrecRec and observe that ⇠ 15% of pairs of claims considered correct by PrecRec

are, in fact, inconsistent with each other (similar results were obtained with synthetic

data). The reason for this behavior is that the model considers most of the claims to

be correct but is unable to distinguish correct from incorrect information. Moreover,

the other methods output a single true claim, and hence are inadequate for the

current problem. This experiment proves that multi-truth data fusion models are not

su�cient for such interrelated data, and that there is indeed a need for approaches

that present consistent and accurate data to users.

5.5.5 E↵ectiveness of Using Data Relationships during Fusion

We evaluate the advantage of using the knowledge of relations among claims of

data items over the e↵ectiveness of di↵erent data fusion models. In particular, we

have three goals: (a) to evaluate whether the knowledge of relations among claims
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Table 5.4.: E↵ect of integrating the entity-relationships among claims on the e↵ec-
tiveness of di↵erent fusion models.

Voting TruthFinder ACCU PrecRec
PO DG PO DG PO DG PO DG

Recall 0.889 0.950 0.876 0.939 0.797 0.940 0.889 0.954
Precision 0.948 0.951 0.939 0.941 0.954 0.944 0.956 0.957

F1 0.917 0.950 0.906 0.940 0.868 0.942 0.921 0.956
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Figure 5.2.: Comparing relationship models PO and DG during fusion of Restaurants.
For PO, we set probability threshold ✓ = 0.05.

improves fusion results, (b) to compare the two approaches, PO and DG, and (c) to

evaluate how the di↵erent data fusion models perform with the knowledge of relations.

We present in Table 5.4, the results of using DG and PO, entity-relationships

among claims, in conjunction with the data fusion models. Comparing the results with

Table 5.3, we find that leveraging data relationships results in an overall improvement

in the precision, recall and F1-measure of all data fusion models. The reason for

this improvement is that using the knowledge of entity-relationships among claims:

(a) single-truth fusion models are converted into multi-truth models, thus retrieving

more than one correct claims for each data item and resulting in higher recall, and

(b) proper traversal of the graph structures results in less false positives compared to

that obtained without the information on relations.
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In Figure 5.2, we compare how the entity-relationship models (PO and DG) fare

in conjunction with di↵erent data fusion models. Since PO does not support partial

orders between claims that result in graphs with cycles, to evaluate PO, we removed

edges on cycles in the directed graphs. To determine correct claims in PO, we set the

probability threshold, ✓ = 0.05, i.e., claims with correctness probability higher than

0.05 are considered correct. While both approaches exhibit comparable improvement

in precision, DG has consistently higher recall for corresponding data fusion models.

This is because DG considers a wide range of relations existing among claims whereas

PO is limited only to hierarchies and leaves out ancestors of an overlapping claim that

are not reachable from the parent of the claim in question. With an increase in the

value of ✓, we observe that PO is able to retrieve far fewer correct claims than DG (a

di↵erence of around 20% in recall when ✓ = 0.1 and ⇠ 70% with ✓ = 0.3).

It is worth mentioning how the data fusion models compare against each other

in the presence of information about relations. Unsurprisingly, our best case is using

DG with PrecRec, when we have access to ground truth for computing source quality

measures and have all the information on relations among claims, thus outperforming

the other data fusion models across all performance metrics. This is in line with earlier

e↵orts in data fusion that emphasize upon the need for accurate initialization of source

quality metrics toward obtaining superior fusion results. It is, however, interesting

to note that with the knowledge of data relationships, even the most näıve data

fusion technique (Voting) achieves significant improvement in precision and recall —

it outperforms state-of-the-art multi-truth model PrecRec that has access to ground

truth but no access to domain knowledge (comparing Voting + DG in Table 5.4 vs.

PrecRec in Table 5.3).

Experiment Takeaways. (1) Leveraging the knowledge on relations among claims

improves fusion results. (2) Arbitrary directed graph representation DG is more e↵ec-

tive at identifying correct claims than partial ordering solution PO. (3) Unsupervised

data fusion models (Voting, TruthFinder, ACCU) perform comparable to supervised

models (PrecRec) with DG. This experiment gives rise to an important result: in the
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presence of domain knowledge, we may not need sophisticated models or ground truth

to benefit from the domain knowledge.

5.5.6 Synthetic Data

To compare our approach (DG) to the partial order algorithm (PO) that is tailored

to use hierarchical ontologies, we conducted a set of experiments on synthetic data

with acyclic edges in the graphs depicting the relationship among its claims. The

prime parameters for data generation were: number of data items (m), number of

sources (n), number of distinct claims per item (k) and probability of an edge between

two claims of a data item (ph). We compare the approaches for a number of scenarios

that we discuss in the following.

5.5.7 Comparison with Partial Order Algorithm

In the first experiment, we generate data by varying k and present the results

in Figure 5.3. Since both the approaches have comparable (and high) precision, we

report only the recall of the methods. The partial order algorithm, in an attempt to

limit overestimating source trustworthiness, does not update the trustworthiness of

sources when correctness of claims are updated during fusion. However, as is evident

from the plots, incorporating this information greatly influences e↵ectiveness of the

algorithm. We also observe that as the number of claims increases, there is a stark

di↵erence between performance of PO and DG. Specifically, we observe at least 10

percentage points of improvement by using the latter over the former when data items

have a large number of claims. This behavior can be explained thus: as the number

of claims increases, there is the possibility of more complicated edges, e.g., overlaps,

existing between claims. DG is designed to address such edges whereas PO is not,

thus resulting in lower recall of the latter.

Next, we test how well the approaches perform as claims are more (or less) related

to each other, i.e., as claims have more (or less) number of edges between them. We
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Figure 5.3.: Comparing the recall of DG with that of PO on synthetic data with
di↵erent number of claims per data item.

generate datasets by varying ph and present the results in Figure 5.4. Again, we

report only recall of the methods since their precision is comparable. We observe

that as claims are more related to each other, there may exist greater number of

overlapping edges. As a result, PO is able to retrieve fewer correct claims than DG,

with as much as 45 percentage points between recall of the two approaches for the

same fusion model. Interestingly, fusion models TruthFinder, ACCU and PrecRec

exhibit similar performance across datasets when used in conjunction with DG. It is

surprising because although PrecRec uses training data, TruthFinder and ACCU are
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Figure 5.4.: Comparing the recall of DG with that of PO when the claims of data
items are rarely related to each other vs. when they are related quite often.

automated fusion models. This observation further strengthens our finding from real

data that with the knowledge of relations, we may not need advanced fusion models

to achieve high e↵ectiveness.

Experiment Takeaways. On data with strict partial orders, DG outperforms PO

— both as the number of claims for a data item increases, and as greater number of

claims are related.
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5.5.8 Discussion on the E�ciency of Directed Graphs

Throughout the course of these experiments, we also kept track of the time taken

by the two approaches, PO and DG, on Restaurants when integrated with di↵erent

fusion models. The time taken by the approaches was broken down into the runtime

of their constituents — pre-processing the relationship model, running the data fusion

model and identifying correct claims. We observed that the cost of incorporating the

knowledge representation in data fusion models is similar irrespective of whether PO

or DG is used. The run-time for identifying correct claims is smaller for PO than

DG because the former uses a probability threshold that prunes substantial parts of

(and, therefore, does not require complete traversal of) the relationship model. In

a nutshell, DG has a longer run-time since it takes additional relations into account

and performs computations overlooked by PO, e.g., leveraging relations during source

quality estimation and navigating multiple access paths for identifying correct claims.

5.6 Summary

In this chapter, we proposed a formalism to express the prior knowledge of entity-

relationships among claims of data items that enables representing a wide range of

relationship semantics existing between claims. We designed a framework to inte-

grate the data relationships with the process of fusing conflicting data from disparate

sources. We demonstrated the applicability of our approach to a number of existing

fusion models and evaluated our approach against other methods that incorporate

such relation information in the data. We showed that, compared to other methods,

our algorithm achieves significant improvement in fusion results.

Through experimental evaluation on real-world data, we show that the perfor-

mance of fusion was significantly improved with the integration of data relationships

by (a) generating meaningful correctness probabilities for claims of data items, and

(b) ensuring that the multiple correct claims output by the fusion models were con-
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sistent with each other. Our approach outperforms state-of-the-art algorithms that

consider the presence of relationships over claims of data items.

Results from this chapter were published in [72].
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6 FUTURE WORK

Recent proliferation of “fake” news has resulted in a number of solutions for auto-

mated fact-checking that view the problem from a largely linguistic perspective. We

observe that the problem of false data detection has roots in several extensively stud-

ied research areas in data management and data mining such as data integration,

data cleaning, crowdsourcing and machine learning. In this chapter, we present our

ongoing and future work aimed at combating false data on the Internet.

False data detection mechanisms have primarily leveraged either linguistic cues

or structured conflict resolution approaches to distinguish correct from incorrect in-

formation. Language-based false data detection approaches heavily rely on di↵erent

aspects of language (e.g., tone, stance, objectivity, hedges, negation) and structure

of community networks (e.g., social media, microblogging websites and e-commerce

websites) to fight fabricated information such as hoaxes, rumors, vandalism, fake

product reviews, controversies etc. Data fusion mechanisms, on the other hand, con-

sider the role of information providers to be vital in determining the correctness of

claims provided by them. While the latter has proved quite successful in resolving

inconsistencies in structured data, it has not been fully explored for the resolution of

unstructured data conflicts.

Furthermore, in the era of “alternative” facts, fact-checking websites, such as

Snopes and PolitiFact, have emerged as vanguards having dedicated teams of em-

ployees who comb through speeches, news stories, press releases to verify rumors

and political claims. We contend that advances made in e↵ectively involving users in

data management tasks, along with language-based and structured conflict resolution

systems, will benefit the cause of combating misinformation on the Internet.

We propose the architecture of AuthIntegrate, an end-to-end system that

ingests (possibly) conflicting data from disparate information providers, curates and
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Figure 6.1.: Figure depicts envisioned architecture of the AuthIntegrate system.

presents highly accurate data to end-users. In the following, we address key challenges

in building this system and outline an agenda for future research. We focus on

(a) detection of false data (Sections 6.1 and 6.2) coupled with combating its spread

through identifying mis-influencers and installing corrective measures (Section 6.3).

6.1 AuthIntegrate: Knowledge Management Module

The foremost step in our proposed architecture is information extraction, which

focuses on retrieving structured information from the collection of unstructured and

noisy textual data provided by disparate data sources such as news agencies and social

media. Broadly, information extraction approaches can be categorized as based on

knowledge engineering techniques (that leverage expert intervention in the form of

rules, examples and domain knowledge), and machine learning techniques (that learn

concept-specific mapping from text and generate rules from training data).
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6.1.1 Information Extraction

We envision the knowledge management module to take a hybrid approach learn-

ing from training data and external resources, such as general-purpose knowledge

bases, master data and human input, to extract data items and their relationships.

Several data management problems form pivotal building blocks of this module, e.g.,

entity resolution [73]; learning entity-relationships [43,44] and establishing source de-

pendencies [8, 12, 36]; and provenance [74], to determine the origin and information

on history of the life cycle of data. A comprehensive knowledge of the relationships

between data items, claims and sources will prove instrumental in explaining the

plausability of claims whereas provenance information and metadata associated with

claims, such as the context of a claim and fragments that have been used as is or

have been altered, will be important in designing algorithms that assess sources and

claims in a principled manner.

6.1.2 Leveraging Linguistic Cues

We also intend to understand the complete context of claims — whether they

are facts, opinions, rumors, hoaxes, urban legends, vandalisms, joke, advertisement,

controversy, their sentiment and establishing their temporal existence (happened in

the past or is a prediction) — a natural language processing task made feasible with

the help of domain experts, crowdsourcing platforms and knowledge bases. We discuss

how these classifications help build the reputation of sources (in Section 6.2) and curb

the rise of false data (in Section 6.3).

6.2 AuthIntegrate: Truth Discovery Module

Data fusion models consider source characteristics to play a pivotal role in esti-

mating the correctness of claims — an approach that is in sharp contrast with most

false data detection mechanisms that solely exercise natural language techniques to
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identify correct information. While the idea of all important sources has made tremen-

dous advances in resolving conflicts, data fusion is designed on the single premise that

sources are primarily benevolent. Current times (of abundant false news), however,

bear testimony to the fact that the “honest sources” assumption no longer holds

true. Adversarial settings are breeding grounds for false and biased data that have

the potential to misguide fusion systems toward incorrect conclusions.

6.2.1 Modeling Distrustful Scenarios

It is imperative to design data fusion models that are guaranteed to be e↵ective

even in the face of malicious data sources. Identifying adversarial and colluding

data sources during data fusion is challenging primarily because these sources may

not behave consistent over time: driven by their interest, data sources may furnish

data sporadically or continuously in large amounts. Traditional data integration

mechanisms consider data sources to be independent of each other. Recent studies

have found data sources to either copy from one another [8,34,35] or be correlated [12]

positively (when sources follow similar data extraction rules) or negatively (when

sources provide complementary data or extract di↵erent types of data).

Existing data fusion techniques thrive on the principle of trust in data sources —

information from trusted sources are more likely to be correct and a source is trusted

if it provides more accurate information. However, in situations when malicious

sources could collude to falsely boost their level of trust, it becomes easy to propagate

misinformation and prove detrimental to data fusion. We, therefore, need principled

mechanisms to answer the following question: Is it possible to render data fusion

systems aware of the presence of collusive relations among data sources?

6.2.2 Broader Characterization of Sources

Data sources are primarily characterized in terms of performance metrics, such as

accuracy, precision and recall, that depend on the number of correct and incorrect
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claims provided by sources. Counting-based approaches fail to address the quality

of sources where claims may span lengthy texts. There is a need to develop source

quality measures that encompass wider categories of claims, such as hoax, opinion,

fact, prediction etc., and are able to capture evolving language tones and stances.

Characterizing sources in this manner helps refine their reputation. For example,

speculative facts and opinions make sources less credible than correct facts and may,

in fact, damage their credibility.

6.2.3 Leveraging Knowledge Bases and Knowledge Representations

Claims for data items, provided by di↵erent sources, are often related to each

other. We intend to apply our solutions from Chapter 5 toward integrating the

knowledge of claim relationships during conflict resolution. The e↵ectiveness of our

solution, however, depends on completeness of the extracted knowledge and can be

improved by accounting for ambiguity in relations. For example, depending on the

context, jaguar could be related to either cat or car. Currently, we assume the

extracted knowledge to be agnostic to the context and thus, devoid of such uncer-

tainties. General-purpose knowledge bases tend to capture contextual information

and will be able to address ambiguous relationships inherent in data. To integrate

knowledge bases with data fusion models, we will need to devise algorithms that ef-

ficiently sift through the volumes of data and identify information pertinent to the

data at hand. Moreover, the framework for integrating binary entity-relationships

can be further improved by exploring more expressive formalisms such as logic-based

knowledge representations and conceptual graphs.

6.3 AuthIntegrate: Misinformation Manager Module

The objective of this module is two-pronged: one, identifying influential data

sources that have the potential of inflicting maximum damage, and two, implementing
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corrective measures to minimize the damage. Toward this goal, we envision strategies

to e�ciently utilize human input and to limit the spread of false information.

6.3.1 Human-in-the-Loop Conflict Resolution

Although automated fact-checking systems [75] enable deconstructing vague and

countering questionable claims, the undeniable success of fact-checking websites (e.g.,

Snopes, PolitiFact) has made it clear that verification by experts is a stepping stone in

the battle to counter false data. Corrective information published from an authorita-

tive resource has the potential to di↵use enormously and prevent the rapid increase in

false data [67,76]. However, incorporating user input is challenging because there are

a large number of claims and few experts with limited budgets to process the claims.

This approach of vetting by experts is particularly important in the face of limited

information on emerging claims. We intend to build upon strategies proposed in [67]

to judiciously leverage user feedback by determining the most beneficial claims to be

validated; these strategies can also be utilized for labeling di↵erent forms of claims

(in Section 6.1) where the challenge is to prioritize labeling tasks for annotators.

Imperfect Feedback. The solutions described in Chapter 4 largely assume access

to domain experts; preliminary solutions involving a crowd of workers has also been

presented. We believe holistically modeling users would facilitate better judgement

over their input. We intend to benefit from the breadth of research in crowdsourcing

over the last few years. However, we can readily identify challenges in involving

non-experts in resolving conflicts. To aggregate uncertain feedback on the same data

item, we need to holistically model users and the quality of their input while also

taking into account their cognitive and physiological characteristics. Alongside, there

is a need to develop an economical model to incorporate uncertain feedback that

addresses the trade-o↵ between time and the cost and quality of improvement in

conflict resolution. We also intend to extend the approximate algorithms in the

decision-theoretic framework to other data fusion models.
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6.3.2 Limiting the Spread of False Information.

False data has the potential to be considered true by a large fraction of consumers;

it is, therefore, of utmost importance to identifymisinfluencers and prevent them from

spreading misinformation. [77,78] demonstrated that by placing limiting campaigns

at influential nodes, it is possible to minimize the number of individuals that believe

in a particular piece of misinformation and prevent the growth of false data. We

propose to extend this idea of identifying misinfluencers to Bayesian networks of data

items and sources, which is di↵erent from the influence maximization problem that

examines the flow of a single propaganda (false data usually spans more than just one

claim in a specific community (false data may extend to a multitude of communities

such as social media, blogs and the Web).
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7 CONCLUSION

Due to the proliferation of data on the Internet, conflict resolution of data integrated

from disparate sources has continued to garner interest from research communities

over the last few decades. The prime objective of this research is to improve conflict

resolution of data integrated from di↵erent sources. In this dissertation, we proposed

to augment automatic data fusion systems with the knowledge of relationships existing

within data provided by di↵erent sources.

We proposed a novel user feedback framework that employs active learning tech-

niques to integrate user-provided ground truth labels and rapidly improve the ef-

fectiveness of data fusion. To minimize user interaction, we proposed a decision-

theoretic approach to determine the data item best suited for validation. The pro-

posed decision-theoretic approach was expensive for large-scale datasets and we pro-

posed approximate algorithms that incorporate relationships among data items and

sources to reduce this cost. Through experimental evaluation on real-world data, we

demonstrated applicability of the approximation algorithms to large datasets and and

existing fusion models, and showed the trade-o↵ between e↵ectiveness and e�ciency

achieved by the proposed solutions.

We also proposed incorporating entity-relationships among claims during the pro-

cess of data fusion where data items may have multiple correct claims. Our proposed

encoding of entity-relationships in the form of an arbitrary directed graph captures

most of the binary relations existing between claims of data items. We outlined steps

to pre-process the directed graph for e↵ective representation and e�cient navigation

during data fusion, and proposed modifications to existing data fusion models for

supporting the directed graph representation. We implemented our approach on top

of existing fusion models and through experiments on real data, demonstrated its

e↵ectiveness in identifying multiple related and consistent truths.
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Finally, we presented some of our ongoing and future work aimed at resolving

conflicts during data integration tasks. Data integration and conflict resolutions re-

main longstanding areas of research and significant progress has already been made

in these areas. Notwithstanding, there are several interesting problems that remain

to be solved. This dissertation is a step forward toward our goal of resolving data

conflicts during data integration and presenting end-users with highly accurate data

integrated from disparate data sources.
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