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ABSTRACT
Algorithmic decision-making systems are successfully being adopted
in a wide range of domains for diverse tasks. While the potential
benefits of algorithmic decision-making are many, the importance
of trusting these systems has only recently attracted attention.
There is growing concern that these systems are complex, opaque
and non-intuitive, and hence are difficult to trust. There has been a
recent resurgence of interest in explainable artificial intelligence
(XAI) that aims to reduce the opacity of a model by explaining its
behavior, its predictions or both, thus allowing humans to scrutinize
and trust the model. A host of technical advances have been made
and several explanation methods have been proposed in recent
years that address the problem of model explainability and trans-
parency. In this tutorial, we will present these novel explanation
approaches, characterize their strengths and limitations, position
existing work with respect to the database (DB) community, and
enumerate opportunities for data management research in the con-
text of XAI.

CCS CONCEPTS
• Information systems; • Computing methodologies→ Arti-
ficial intelligence;

KEYWORDS
Explainable AI; Data Management
ACM Reference Format:
Romila Pradhan, Aditya Lahiri, Sainyam Galhotra, and Babak Salimi. 2022.
Explainable AI: Foundations, Applications, Opportunities for Data Man-
agement Research . In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3514221.3522564

1 INTRODUCTION
Artificial intelligence (AI) systems are increasingly deployed for
decision-making in critical domains, such as healthcare, criminal
justice, and finance. However, the opacity and complexity of these
systems pose new threats. There is growing concern that the opac-
ity of these systems can inflict harm to stakeholders distributed
across different segments of society by perpetuating systemic bi-
ases and discrimination reflected in training data [37]. These calls
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for transparency created a resurgence of interest in eXplainable
Artificial Intelligence (XAI– see [50] for a recent survey), which
aims to provide human-understandable explanations of outcomes
or processes of algorithmic decision-making systems.

The development of XAI methods is motivated by technical, so-
cial and ethical objectives [9, 14, 36, 38, 44]: (1) increasing societal
acceptance of machine learning (ML)-based decision-making algo-
rithms by establishing trust in decision results, (2) providing users
with actionable insights to change the results of algorithms in the
future, (3) facilitating the identification of sources of harms such as
bias and discrimination, and (4) providing the ability to debug ML
algorithms and models by identifying errors or biases in training
data that result in adverse and unexpected behavior. The urgency
of this matter has been furthered by governmental regulations that
mandate businesses using automated decision-making systems to
explain their decisions to end-users [1, 16].

Recently, several methods have been proposed to explain the
behavior or predictions of an ML model. These approaches can be
broadly categorized based on: (a) whether explainability is achieved
by design (intrinsic) or by post factum system analysis (extrinsic),
(b) whether the methods assume access to system internals (model
dependent) or can be applied to any black-box algorithmic system
(model agnostic), and (c) whether the explanations generated by the
method cater to the prediction for an individual instance (local), ex-
plains the overall behavior of the model (global) or lies somewhere
in between these two extremes.

In this tutorial, we will provide a detailed coverage of contempo-
rary XAI techniques and highlight their strengths and limitations.
In contrast to existing tutorials on XAI, we will discuss the scope
of XAI in the context of the database community and outline a
set of challenges and opportunities for data management research
leveraging advances in XAI and contributing to challenges in XAI
research. The learning outcomes of the tutorial are as follows.

(1) Understand the landscape of XAI techniques.
(2) Appreciate the connection between XAI techniques and ex-

isting techniques in the data management community.
(3) Exposure to key vulnerabilities of prior XAI proposals and

how data management techniques can help in numerous
instances.

(4) Exposure to some new opportunities to leverage data prove-
nance and causal inference based techniques to explainmodel
behavior and debugging AI pipelines.

Overall, our tutorial proposal is aimed to summarize key advances
in the ML and AI communities with a data management lens and
present numerous directions for future research.
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2 COVERED TOPICS
Models and their predictions can be interpreted and explained
according to a number of dimensions depending on the results
generated by existing XAI techniques [50]. A variety of techniques
are currently available that address these different dimensions of
explainability. For example, somemethods provide a comprehensive
summary of features representing the data used to train a model,
some return data points to make the model interpretable, some
approximate it with an inherently interpretable model and so on.
The tutorial is organized in five broad topics covering representative
techniques along these various dimensions. The contents of each
topic are summarized below.

2.1 Feature-based Explanations
One common way to explain black-box models is to attribute re-
sponsibility of the model outputs to its inputs. This approach is
analogous to providing input feature importance. For instance, in
case of Linear Regression, the coefficients of the features in the
learned linear equation can be an indicator for the importance of
the features. This end goal of assigning a real number to all features
in the training data can be achieved in multiple ways. Furthermore,
the number can indicate both the magnitude and direction of the
influence exerted by the feature. We will cover the following feature
attributions methods in the tutorial.

2.1.1 Surrogate Explainability. The basic idea behind explainability
methods based on surrogate models is that we can approximate a
(usually) local region of a complex black-box model using a simple
surrogate model as a proxy. This surrogate model is an inherently
interpretable model such as linear regression model [53] or deci-
sion rules [43]. The interpretation of the surrogate model is taken
to be the explanation of the complex model’s decision making.
This method is also a subset of post hoc explainability where com-
plex models are explained after they have been trained, making
it convenient for practitioners to separate training and explana-
tion processes. However, this method has various assumptions. For
instance, LIME [53] assumes that the weighted linear regression
surrogate model is able to model the complex model’s decision
making well enough. It also involves sampling of points near the
local neighborhood which can be unreliable [73]. These compo-
nents can be exploited to perform adversarial attacks that render
the explanations futile [66]. There has been a lot of incremental
work on creating more powerful methods based on the general
LIME framework [42, 68]. However, these works still suffer from
issues related to unreliable sampling.

2.1.2 Methods Based on Shapley Value. Shapley Values [63] is a
concept from Game Theory that provides a method to fairly dis-
tribute payoffs obtained from a game among its players. It is the
only method that follows a set of desired properties of such a pay-
off allocation. Recently, there has been an increased adoption of
this concept in XAI. The idea is transferred by replacing the game
with the prediction of the learning model and the players with the
features involved in obtaining the prediction. By making this con-
nection, we are able to convey how much each feature contributed
to the prediction. A neat property by virtue of Shapley value alloca-
tion is that the attributions of the features add up to the difference

of prediction given out for a particular point and the average pre-
diction. Quantitative Input Influence [14] uses Shapley values to
find average marginal influence of a feature across multiple sets.
SHAP [47] unifies multiple additive feature importance measures
and introduces model-agnostic Kernel SHAP to approximate Shap-
ley values and produce attributions as explanations. TreeSHAP [46]
introduces a polynomial-time algorithm to approximate Shapley
values for tree-based complex models. It exploits properties of the
tree structure for faster and efficient computation. It also suggests
ways to combine local explanations to get a global understanding of
the model. Computing Shapley values takes exponential time, since
all possible feature orderings are considered. Existing methods,
therefore, compute some approximation of these values, leading to
certain issues with the attributions provided [40]. However, Broeck
et al. suggest that even these approximations can have intractable
computations for some common ML models such as logistic re-
gression [70]. Other criticisms of using methods based on Shapley
values include defining “games" in the context of a learning task
and the inability of these methods to capture the indirect influences
of features on the target label [40].

2.1.3 Causal Approaches. A natural human-centric way to explain
predictions is to provide end-users with causal relationships be-
tween the input features and the target label. This notion goes be-
yond capturing mere correlations and actually tries to understand
the underlying relationships in data which can help capture feature
dependencies and interactions. In contrast to vanilla surrogate-
based explainability methods that use standard learning algorithms
to train proxy models, recent research has attempted to learn surro-
gates with causal objective functions instead [61]. There also have
been some efforts on integrating causality with the concept of Shap-
ley values. Asymmetric Shapely values [18] incorporate causality
by discarding coalitions that do not follow causal ordering. In this
process, they sacrifice the symmetry axiom of vanilla Shapley val-
ues. Causal Shapley values [30] use causal interventions and allow
for explanations that are able to decompose a feature’s influence
into direct and indirect effects without violating any of the original
Shapley value axioms. Shapley flow [74] interprets model based on
assigning credit to the edges in a graph and in doing so, it extends
the set-based view of Shapley values to a graph-based approach.
Furthermore, nuanced causal notions such as those of sufficiency
and necessity can also be used in these methods to provide more
intuitive explanations [20, 75].

2.1.4 Counterfactuals and Algorithmic Recourse. Counterfactual
explanations surface hypothetical examples that serve as compar-
ison points [45]. Concretely, given that an input instance gets an
output 𝑦, counterfactual explanations provide as output another in-
put instance which is minimally different from the original instance
and has an opposite output 𝑦′. Counterfactual-based explanation
methods adhere to human reasoning in that they help us "com-
pare" with other instances. They can also be extended to provide
actionable recourse to the user, that is, providing users with steps
to change their obtained decision [35, 69]. DiCE [51] generates a
candidate set of diverse and feasible counterfactuals as explanations
to understand ML classifiers. LEWIS [20, 21] uses contrastive prob-
abilistic counterfactuals to both explain model output and provide
counterfactual recourse to users who obtained a negative decision.
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There are, however, challenges with counterfactuals. They can be
gamed [67], and they also sometimes provide unrealistic and im-
possible counterfactual instances [5]. Combining counterfactual
explanations with causality [48] or constraining the generated coun-
terfactuals to obey the data manifold [5] can help overcome some
of these issues.

2.2 Rule-based Explanations
Feature-attribution-based methods assign a real-valued importance
score to each feature value. In contrast, rule-based explanations
generate a set of rules as explanations to model behavior. The set
of output rules satisfy a common property that whenever these
rules are obeyed, the model provides a particular outcome. These
rules should ideally be concise and be applicable to numerous data
points. Longer rules (more than 5 clauses) are incomprehensible,
while very specific rules are not generalizable. Anchors [54] is a
method that attempts to generate short and widely applicable rules.
It uses a multi-armed bandit-based algorithm to search for these
rules. Lakkaraju et al. use interpretable decision sets to obtain a set
of if-then rules which can be used to explain black-box models [43].
Their objective function is designed to balance and optimize both
the accuracy and interpretability of these decision sets.

2.2.1 Rule-mining and rule-based data mining. Pattern recognition
and rule mining is one of the fundamental topics of research in
the data management community [3, 4, 26, 27]. Prior research on
association rule and frequent itemset mining focussed towards
identifying patterns across database. The research in this domain
has evolved from pattern mining towards designing rule-based
data mining techniques that leverage recent advances of weak-
supervision for labelling datasets [7, 19, 71]. We will discuss how
different paradigms from prior studies in data management could
be leveraged to study different aspects of rule-based explanations.
recent work proposed the use of abductive reasoning to computing
provably correct explanations for ML predictions.

2.2.2 Logic-based methods. Recent work proposed the use of ab-
ductive reasoning and logic-based diagnosis to computing provably
correct explanations for ML predictions. These methods work with
a logical representation of ML algorithms [12, 32, 32, 65]. In this
context, the fundamental concepts of prime implicate/implicant
are closely related to sufficiency and necessary causation when the
underlying causal model is a logical circuit [13, 15, 25, 25, 31]. It
can be shown that the notion of sufficient/necessary explanations
proposed in [65] translates to explanations in terms of a set of
attributes that have a sufficiency/necessary score of 1. However,
these methods can generate explanations only in terms of a set of
attributes, are intractable in model-agnostic settings, fail to account
for the causal interaction between attributes, and cannot go beyond
deterministic algorithms.

2.3 Training-data-based Explanations
In contrast to feature-attribution methods, training-data-based
methods attribute the output of ML algorithms to particular in-
stances of the training dataset [10]. The central idea of data-based
explanations is that training data affects the model and thus, indi-
rectly affects the outcomes predicted by the model. To understand

the predictions of a model, data-based explanations trace the model
parameters and predictions back to the training data used to train
the model. These methods explain the behavior of the model not
in terms of the features of the data (e.g., age, gender etc.) but with
respect to specific data points (e.g., enumerate 20 data points re-
sponsible for a particular model output). Data-based explanations
help in debugging ML models, and understanding and explaining
model behavior and model predictions. We will cover the following
training-data-based methods in this tutorial.

2.3.1 Data Valuation Explanations. Shapley values [63] have also
been applied to quantify the value of data [24, 34, 41]. Data Shap-
ley [24] assigns values to individual training data points based on
their contribution to the performance of themodel (in terms of some
performance metric e.g., accuracy, precision) over a test dataset.
Computing exact Shapley values requires the model to be retrained
for each data point, and is intractable for real-world datasets that
comprise of tens of thousands of data points. Ghorbani and Zou
propose Monte-Carlo based and gradient-based approaches to ef-
ficiently approximate data Shapley values of data points [24]. Jia
et al. introduce practical Shapley value estimation algorithms by
making assumptions on the stability of the model in terms of its
performance metric and loss function [34]. Note that the Data Shap-
ley value of a data point is specific to the learning algorithm, the
performance metric and how the data point is related to other train-
ing data points. Several researchers have posited that measuring
the Data Shapley value of training data points with respect to a
fixed data set ignores the fact that the training data is in fact sam-
pled from an unknown underlying distribution [23, 41]. Moreover,
the assigned values may not be meaningful for the data points in
the context of a new dataset. Distributional Shapley [23, 41] ad-
dresses these concerns by extending Data Shapley to quantify the
value of data points in the context of an underlying data distribu-
tion. Ghorbani et al. estimate the distributional Shapley value of
a data point by considering the expected value of its data Shapley
value with respect to the underlying distribution [23]. Kwon et
al. introduce analytical expressions for distributional Shapley for
commonly used supervised and unsupervised learning algorithms
such as linear regression, binary classification and non-parametric
density estimation [41].

2.3.2 Influence-based Explanations. We next consider methods
that identify training data points that are the most influential for
estimating the model parameters, and in turn, for the model predic-
tions. The naïve way of computing the influence of a data point is
by removing it, retraining the ML model on the reduced dataset and
computing the difference in model parameters or model predictions.
Retraining the model is computationally prohibitive when there
are numerous data points to consider as is the case with most of
the real-world datasets.

Recently, influence functions [11], a classic technique of robust
statistics that measures how optimal model parameters depend on
training data points, have been used to rank individual training
data points based on their influence on model predictions. For para-
metric models with twice-differentiable loss functions, Koh and
Liang compute the first-order approximate change in model param-
eters by upweighting the data point by a small amount [39]. This
approach avoids retraining the model by estimating the change
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in model parameters effected by a slight change in the weight of
a data point. First-order approximations imply that the effect of
removing a group of data points can be obtained by simply adding
the influences of individual data points. However, applying first-
order approximations to a group of data points can be inaccurate
because they do not capture the correlations among data points in
the group. Basu et al. estimate the influence of a coherent group of
data points using second-order approximations [8]: the intuition is
that in the presence of correlations between data points, the effect
of higher-order approximations is not negligible. These approaches
are not applicable to non-parametric models such as decision trees.
Sharchilev et al. extend influence functions to the non-parametric
gradient boosted decision trees by proposing methods for estimat-
ing influences based on proxy metrics [64]. Their approach further
develops efficient approximations to compute influence by fixing
the tree ensemble structure and analyzing changes in leaf values
with respect to the weights of the training data points.

2.4 Explanations for Unstructured Data
Deep learning has been very successful, especially in tasks such as
image classification and language translation that involve images
and texts. Although existing XAI approaches primarily focus on
structured data, there have been significant advances on explain-
ing ML model predictions over unstructured data. For example,
explanations for image classification models can be found under
various names such as sensitivity map, saliency map, pixel attribu-
tion maps, gradient-based attribution methods, feature relevance,
feature attribution, and feature contribution [50]. These explana-
tions typically highlight and rank the input pixels in terms of their
importance toward the classification outcome. However, individual
pixels may not have a large direct influence on the outcome of a
classifier, but can indirectly influence its outcome by contributing
to the abstract features and concepts learned by neural networks
from the raw pixels. It has been shown that these methods are
computationally expensive and could be highly misleading, fragile
and unreliable [2, 22, 52]. Similarly, LIME [53] can be applied to
textual data to identify specific words that explain the outcome of
a text classification model. Another popular type of explanations in
computer vision are counterfactual explanations that are generated
by changing minimal regions of an image that lead to a change in
the outcome of a classification [72]. In this tutorial, we will focus
on structured data since it is more relevant to the DB community.

3 OPPORTUNITIES FOR DATA MANAGEMENT
RESEARCH

In the final stage of the tutorial, we will outline data management
research directions in the context of XAI including:
Efficiency of Feature-based Explanations. The intractability of
feature-based explanations [6, 70] is a major challenge going for-
ward. Furthermore, counterfactual explanations must be plausible,
feasible, and given the huge search space of perturbations, gener-
ated in real time. Recent efforts in this direction includes GeCo [60],
but several aspects, such as explanation robustness to small changes
in data distribution, automatically inferring plausibility and feasi-
bility constraints, and addressing data privacy during explanation
generation, are yet to be covered.

Data-Based Explanations. The central idea in data-based expla-
nations is to estimate updated model parameters when a subset
of training data is removed. An interesting new direction is to
adopt database techniques such as incremental view maintenance
to estimate the parameters of the updated model by incrementally
retraining the model [59, 77]. Recently, Wu et al. proposed a system
that uses influence functions to explain SQL queries by identifying
data points that are responsible for an error in a query result (where
the query includes predictions from an ML model trained over that
data) [76]. Wu et al. develop a provenance-based approach for in-
cremental computation of model parameters and the influence of
removing subsets of training data points [77]. An important future
challenge is to design algorithms that generate compact, diverse
explanations that describe homogeneous subsets of training data.
Provenance-Based Explanations. Existing data-based XAI tech-
niques focus on identifying training data points responsible for
error in model predictions. However, training data errors may get
introduced or exacerbated during different data preparation stages.
To hold particular stages accountable for ML decisions, the flow of
training data points must be monitored through different stages
using provenance techniques [29]. Provenance information can be
harnessed to generate explanations for an ML model outcome in
terms of the actions taken and decisions made throughout the ML
pipeline that led to the model outcome.
Explanations in Databases. Explaining database query results
has been an active area of research where the focus is on providing
justification and evidence that establish the validity of or assist
with the interpretation of a query answer [49, 55]. We believe that
the large body of work on explanations for database query results
can benefit from advances in XAI research and vice versa. As an
example, recent developments in XAI have inspired novel explain-
ability approaches such as Shapley value-basedmethods to generate
explanations for SQL query answers [62] and database repairs [17].
User study and evaluation. Explainable Artificial Intelligence
(XAI) and explanations in general are aimed towards helping end-
users understand the internal of complex data science pipelines.
However, evaluation of different explanation techniques requires
carefully designed experiments that understand user’s understand-
ing. User studies are generally performed to evaluate faithfulness
of explanations [28, 53]. Recent work has exposed the vulnerabili-
ties of many prior proposals [33]. We will discuss the connections
between these vulnerabilities and commonly considered evaluation
strategies in data management. We will raise open questions to
improve the guidelines to run user studies to streamline the design
of XAI techniques.

4 TUTORIAL ORGANIZATION
Target Audience. Explainable AI has been a fast-growing and
recent area of interest for the database and ML communities. We
expect this tutorial to have widespread appeal among the SIGMOD
2022 attendees. The tutorial aims at researchers, developers and stu-
dents with an interest in XAI. Database researchers can expect the
tutorial to provide interesting research opportunities at the junction
of data management and ML. From the perspective of system de-
velopers and practitioners, the concepts and techniques presented
in the tutorial can serve as potent mechanisms for understanding,
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explaining and debugging production ML models. Finally, the tuto-
rial will help students comprehend and appreciate the complexities
of XAI, going far beyond the toy examples typically covered in a
classroom setting. We will use running examples to demonstrate
the advantages and limitations of different approaches in a hands-
on fashion. All the materials that will be used for the tutorial will
be publicly available.
Prerequisites. The background expected is that of an introductory
ML course covering supervised ML and optimization techniques.
The tutorial has been carefully structured to accommodate both
attendees unfamiliar with the topic and experienced participants
by providing required background knowledge, shared terminology
and common understanding of the basic concepts in XAI.
Intended Duration. We are aiming for a 1.5-hour tutorial.

5 TUTORIAL PRESENTERS
Romila Pradhan is an Assistant Professor at Purdue University.
Her research interests lie in data management with an emphasis on
building trustworthy and responsible data management systems.
She received her undergraduate degree in Mathematics and Com-
puting from the Indian Institute of Technology, Kharagpur, and the
PhD degree in Computer Science from Purdue University.
Aditya Lahiri is a Masters student at University of California,
San Diego, majoring in Computer Science with a specialisation in
Machine Learning and Artificial Intelligence. His interests lie in
explainable ML and causal inference. He received his undergraduate
degree from BITS Pilani, Goa. Post that, he worked at American
Express, AI Labs for two years on problems related to ensemble
algorithms, explainable AI and NLP.
Sainyam Galhotra is a Computing Innovation Postdoctoral re-
searcher at University of Chicago. He received his Phd from Uni-
versity of Massachusetts Amherst in 2021. Previously, he was a
researcher at Xerox Research and received his Bachelor’s degree
in computer science from Indian Institute of Technology, Delhi in
2014. His research interests span the area of Data Management
with a focus towards building equitable systems. He is a recipient
of the Best Paper Award in FSE 2017 and Most Reproducible Paper
Award in SIGMOD 2017 and 2018. He is a DAAD AInet Fellow and
the first recipient of the Krithi Ramamritham Award at UMass for
contribution to database research.
Babak Salimi is an Assistant Professor at the Halıcıoğlu Data Sci-
ence Institute at the University of California at San Diego (UCSD).
He is also affiliated with the Database and AI Labs of the UCSD
Computer Science and Engineering department. His research spans
causal inference and responsible data management, and fairness
and transparency. Salimi has made several contributions to the
understanding of various aspect of trustworthy data analysis, in-
cluding explainability, fairness (won the SIGMOD’19 best paper
award), reliability (won the VLDB’18 best Demo award), robust-
ness [20, 56–58].
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